This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151284-Thumbnail Image.png
Description
Dietary protein is known to increase postprandial thermogenesis more so than carbohydrates or fats, probably related to the fact that amino acids have no immediate form of storage in the body and can become toxic if not readily incorporated into body tissues or excreted. It is also well documented that

Dietary protein is known to increase postprandial thermogenesis more so than carbohydrates or fats, probably related to the fact that amino acids have no immediate form of storage in the body and can become toxic if not readily incorporated into body tissues or excreted. It is also well documented that subjects report greater satiety on high- versus low-protein diets and that subject compliance tends to be greater on high-protein diets, thus contributing to their popularity. What is not as well known is how a high-protein diet affects resting metabolic rate over time, and what is even less well known is if resting metabolic rate changes significantly when a person consuming an omnivorous diet suddenly adopts a vegetarian one. This pilot study sought to determine whether subjects adopting a vegetarian diet would report decreased satiety or demonstrate a decreased metabolic rate due to a change in protein intake and possible increase in carbohydrates. Further, this study sought to validate a new device called the SenseWear Armband (SWA) to determine if it might be sensitive enough to detect subtle changes in metabolic rate related to diet. Subjects were tested twice on all variables, at baseline and post-test. Independent and related samples tests revealed no significant differences between or within groups for any variable at any time point in the study. The SWA had a strong positive correlation to the Oxycon Mobile metabolic cart but due to a lack of change in metabolic rate, its sensitivity was undetermined. These data do not support the theory that adopting a vegetarian diet results in a long-term change in metabolic rate.
ContributorsMoore, Amy (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Thesis advisor) / Gaesser, Glenn (Committee member) / Arizona State University (Publisher)
Created2012
150900-Thumbnail Image.png
Description
Birds have plasma glucose levels that are 1.5-2 times greater than mammals of similar body mass in addition to higher free fatty acid concentrations, both of which would typically impair endothelium-dependent vasodilation if observed in mammals. Endothelium-dependent vasodilation can be stimulated in mammals through the use of acetylcholine (ACh), which

Birds have plasma glucose levels that are 1.5-2 times greater than mammals of similar body mass in addition to higher free fatty acid concentrations, both of which would typically impair endothelium-dependent vasodilation if observed in mammals. Endothelium-dependent vasodilation can be stimulated in mammals through the use of acetylcholine (ACh), which primarily acts through nitric oxide (NO) and cyclooxygenase (COX)-mediated pathways, with varying reliance on endothelial-derived hyperpolarizing factors (EDHFs). Very few studies have been conducted on small resistance systemic arteries from birds. The hypothesis was that because birds have naturally high glucose and free fatty acid concentrations, ACh-induced vasodilation of isolated arteries from mourning doves (Zenaida macroura) would be independent of endothelial-derived factors and resistant to high glucose-mediated vascular dysfunction. Small resistance mesenteric and cranial tibial (c. tibial) arteries were pre-constricted to 50% of resting inner diameter with phenyleprine then exposed to increasing doses of ACh (10-9 to 10-5 μM) or the NO donor, sodium nitroprusside (SNP; 10-12 to 10-3 μM). For both vessel beds, ACh-induced vasodilation occurred mainly through the activation of potassium channels, whereas vasodilation of mesenteric arteries additionally occurred through COX. Although arteries from both vessel beds fully dilated with exposure to sodium nitroprusside, ACh-mediated vasodilation was independent of NO. To examine the effect of high glucose on endothelium-dependent vasodilation, ACh dose response curves were conducted following exposure of isolated c. tibial arteries to either a control solution (20mM glucose) or high glucose (30mM). ACh-induced vasodilation was significantly impaired (p = 0.013) when exposed to high glucose, but normalized in subsequent vessels with pre-exposure to the superoxide dismutase mimetic tiron (10 mM). Superoxide concentrations were likewise significantly increased (p = 0.0072) following exposure to high glucose. These findings indicate that dove arteries do not appear to have endogenous mechanisms to counteract the deleterious effects of oxidative stress. Additional studies are required to assess whether endogenous mechanisms exist to protect avian vascular reactivity from systemic hyperglycemia.
ContributorsJarrett, Catherine Lee (Author) / Sweazea, Karen L (Thesis advisor) / Johnston, Carol (Committee member) / Gaesser, Glenn (Committee member) / Arizona State University (Publisher)
Created2012