This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 5 of 5
Filtering by

Clear all filters

135641-Thumbnail Image.png
Description
Einstein's theory of special relativity has been used by accomplished science fiction authors since its discovery in 1905, allowing intrepid adventurers to reach far away worlds without having to fear time's passage. By traveling near light speed, these fictional travelers experience a different passage of time as the universe ensures

Einstein's theory of special relativity has been used by accomplished science fiction authors since its discovery in 1905, allowing intrepid adventurers to reach far away worlds without having to fear time's passage. By traveling near light speed, these fictional travelers experience a different passage of time as the universe ensures the commonality of the speed of light in all reference frames. In the here and now, this method of travel has been proposed to assist in interstellar and interplanetary exploration. This paper will investigate the practicality of this method of travel by proposing a mission utilizing a craft with this type of velocity.
ContributorsWaaler, Mason Duran (Author) / Jacob, Richard (Thesis director) / Covatto, Carl (Committee member) / Foy, Joseph (Committee member) / School of Life Sciences (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
131302-Thumbnail Image.png
Description
This paper addresses many of the problems that will be encountered when travelling to Mars and discusses the possibility of different solutions. Protection from radiation, oxygen production, and water sources are some of the major problems and the solution to these problems are vital for the success of future space

This paper addresses many of the problems that will be encountered when travelling to Mars and discusses the possibility of different solutions. Protection from radiation, oxygen production, and water sources are some of the major problems and the solution to these problems are vital for the success of future space travel. By utilizing technology that has already been used in space travel and implementing the use of technology that is successful on Earth, humans will be able to live on Mars successfully.
ContributorsWebber, Kaitlin Brooke (Author) / Culbertson, Robert (Thesis director) / Foy, Joseph (Committee member) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
130860-Thumbnail Image.png
Description

We present the isotope yields of two post-explosion, three-dimensional 15 M_sol core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of presolar SiC stardust. We find that material from the interior of a core-collapse supernova can

We present the isotope yields of two post-explosion, three-dimensional 15 M_sol core-collapse supernova models, 15S and 15A, and compare them to the carbon, nitrogen, silicon, aluminum, sulfur, calcium, titanium, iron, and nickel isotopic compositions of presolar SiC stardust. We find that material from the interior of a core-collapse supernova can form a rare subset of SiC stardust, called SiC D grains, characterized by enrichments of the isotopes 13C and 15N. The innermost material of these core-collapse supernovae is operating in the neutrino-driven regime and undergoes rapid proton capture early in the explosion, providing these isotopes which are not present in such large abundances in other stardust grains of supernova origin.

ContributorsSchulte, Jack (Author) / Bose, Maitrayee (Thesis director) / Foy, Joseph (Committee member) / School of Earth and Space Exploration (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132576-Thumbnail Image.png
Description
This study was conducted in order to determine whether the lagomorphs of 111 Ranch- Aztlanolagus agilis, Hypolagus arizonensis, and Sylvilagus cunicularius- could be distinguished based on femora. This is because while there is a large quantity of disarticulated lagomorph postcranial fossils from 111 Ranch, the chief diagnostic traits of A.

This study was conducted in order to determine whether the lagomorphs of 111 Ranch- Aztlanolagus agilis, Hypolagus arizonensis, and Sylvilagus cunicularius- could be distinguished based on femora. This is because while there is a large quantity of disarticulated lagomorph postcranial fossils from 111 Ranch, the chief diagnostic traits of A. agilis and H. arizonensis are the enamel patterns on their third premolars, leaving a large swath of specimens unidentifiable by diagnostic traits alone. Specimens from the Arizona Museum of Natural History were measured and compared to specimens known to be from these genera. Additionally, morphological traits in mandibles were used to identify mandible specimens, which in turn were used to identify fossils with the same specimen label. Statistical tests such as t-tests and principal components analyses were used to examine the distributions of sizes and locate clusters of datapoints likely corresponding to each genus. Some of these could be linked to a genus based on one particular specimen, P15156, which had been identified as Hypolagus based on its mandible morphology and size. The majority of the Museum'a specimens were thus associated with one of the three species, save for those which were too damaged and intermediate in size to confidently categorize.
ContributorsTkacik, Stephanie Marie (Author) / Farmer, Jack (Thesis director) / Reed, Kaye (Committee member) / McCord, Robert (Committee member) / School of Earth and Space Exploration (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

Space exploration and science fiction have deep historical ties with science fiction literature. From the beginning of the space race, American science fiction stories influenced policy makers, scientists, and the public in their visions of space exploration. However, in the 21st century, the who, what, and why of space exploration

Space exploration and science fiction have deep historical ties with science fiction literature. From the beginning of the space race, American science fiction stories influenced policy makers, scientists, and the public in their visions of space exploration. However, in the 21st century, the who, what, and why of space exploration are changing. Space exploration is no longer the endeavor of the world's superpowers. Countries from across the global south in Asia and Africa have created space programs and have constructed spacecraft to benefit their country and their international power. The emergence of new countries and the interconnectedness of the modern world has the potential to empower postcolonial countries' perspectives and interests. India is a prime example of a country impoverished by colonialism that has now become one of the world's largest economies and a primary stakeholder in future human space exploration. Moreover, India's rich literary heritage, especially in mythology and science fiction, has the potential to predict and to shape what India brings to the international table. This thesis aims to answer the question: How will/should Indian post-colonial science fiction affect the country’s advancement of human space exploration, without making the same mistakes as the west?

ContributorsTamhane, Malhar (Author) / Martin, Thomas (Thesis director) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2023-05