This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 5 of 5
Filtering by

Clear all filters

152324-Thumbnail Image.png
Description
With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human

With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human to provide it some supervisory parameters that modify the degree of autonomy or allocate extra tasks to the robot. In this regard, this thesis presents an approach to include a provision to accept and incorporate such human inputs and modify the navigation functions of the robot accordingly. Concepts such as applying kinematical constraints while planning paths, traversing of unknown areas with an intent of maximizing field of view, performing complex tasks on command etc. have been examined and implemented. The approaches have been tested in Robot Operating System (ROS), using robots such as the iRobot Create, Personal Robotics (PR2) etc. Simulations and experimental demonstrations have proved that this approach is feasible for solving some of the existing problems and that it certainly can pave way to further research for enhancing functionality.
ContributorsVemprala, Sai Hemachandra (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
133211-Thumbnail Image.png
Description
This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term memory. To address this problem, we proposed that using a Neural Turing Machine (NTM) framework adds long-term memory to the system. We evaluated this approach by using it to master a palindrome task. The network was able to infer how to create a palindrome with 100% accuracy. Since the NTM structure proves useful, we aim to use it in the given scenarios to improve the navigation safety and accuracy of a simulated autonomous car.
ContributorsMartin, Sarah (Author) / Ben Amor, Hani (Thesis director) / Fainekos, Georgios (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05
155083-Thumbnail Image.png
Description
Multi-sensor fusion is a fundamental problem in Robot Perception. For a robot to operate in a real world environment, multiple sensors are often needed. Thus, fusing data from various sensors accurately is vital for robot perception. In the first part of this thesis, the problem of fusing information from a

Multi-sensor fusion is a fundamental problem in Robot Perception. For a robot to operate in a real world environment, multiple sensors are often needed. Thus, fusing data from various sensors accurately is vital for robot perception. In the first part of this thesis, the problem of fusing information from a LIDAR, a color camera and a thermal camera to build RGB-Depth-Thermal (RGBDT) maps is investigated. An algorithm that solves a non-linear optimization problem to compute the relative pose between the cameras and the LIDAR is presented. The relative pose estimate is then used to find the color and thermal texture of each LIDAR point. Next, the various sources of error that can cause the mis-coloring of a LIDAR point after the cross- calibration are identified. Theoretical analyses of these errors reveal that the coloring errors due to noisy LIDAR points, errors in the estimation of the camera matrix, and errors in the estimation of translation between the sensors disappear with distance. But errors in the estimation of the rotation between the sensors causes the coloring error to increase with distance.

On a robot (vehicle) with multiple sensors, sensor fusion algorithms allow us to represent the data in the vehicle frame. But data acquired temporally in the vehicle frame needs to be registered in a global frame to obtain a map of the environment. Mapping techniques involving the Iterative Closest Point (ICP) algorithm and the Normal Distributions Transform (NDT) assume that a good initial estimate of the transformation between the 3D scans is available. This restricts the ability to stitch maps that were acquired at different times. Mapping can become flexible if maps that were acquired temporally can be merged later. To this end, the second part of this thesis focuses on developing an automated algorithm that fuses two maps by finding a congruent set of five points forming a pyramid.

Mapping has various application domains beyond Robot Navigation. The third part of this thesis considers a unique application domain where the surface displace- ments caused by an earthquake are to be recovered using pre- and post-earthquake LIDAR data. A technique to recover the 3D surface displacements is developed and the results are presented on real earthquake datasets: El Mayur Cucupa earthquake, Mexico, 2010 and Fukushima earthquake, Japan, 2011.
ContributorsKrishnan, Aravindhan K (Author) / Saripalli, Srikanth (Thesis advisor) / Klesh, Andrew (Committee member) / Fainekos, Georgios (Committee member) / Thangavelautham, Jekan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2016
155312-Thumbnail Image.png
Description
For autonomous vehicles, intelligent autonomous intersection management will be required for safe and efficient operation. In order to achieve safe operation despite uncertainties in vehicle trajectory, intersection management techniques must consider a safety buffer around the vehicles. For truly safe operation, an extra buffer space should be added to account

For autonomous vehicles, intelligent autonomous intersection management will be required for safe and efficient operation. In order to achieve safe operation despite uncertainties in vehicle trajectory, intersection management techniques must consider a safety buffer around the vehicles. For truly safe operation, an extra buffer space should be added to account for the network and computational delay caused by communication with the Intersection Manager (IM). However, modeling the worst-case computation and network delay as additional buffer around the vehicle degrades the throughput of the intersection. To avoid this problem, AIM, a popular state-of-the-art IM, adopts a query-based approach in which the vehicle requests to enter at a certain arrival time dictated by its current velocity and distance to the intersection, and the IM replies yes
o. Although this solution does not degrade the position uncertainty, it ultimately results in poor intersection throughput. We present Crossroads, a time-sensitive programming method to program the interface of a vehicle and the IM. Without requiring additional buffer to account for the effect of network and computational delay, Crossroads enables efficient intersection management. Test results on a 1/10 scale model of intersection using TRAXXAS RC cars demonstrates that our Crossroads approach obviates the need for large buffers to accommodate for the network and computation delay, and can reduce the average wait time for the vehicles at a single-lane intersection by 24%. To compare Crossroads with previous approaches, we perform extensive Matlab simulations, and find that Crossroads achieves on average 1.62X higher throughput than a simple VT-IM with extra safety buffer, and 1.36X better than AIM.
ContributorsAndert, Edward (Author) / Shrivastava, Aviral (Thesis advisor) / Fainekos, Georgios (Committee member) / Ben Amor, Hani (Committee member) / Arizona State University (Publisher)
Created2017
157799-Thumbnail Image.png
Description
The goal of reinforcement learning is to enable systems to autonomously solve tasks in the real world, even in the absence of prior data. To succeed in such situations, reinforcement learning algorithms collect new experience through interactions with the environment to further the learning process. The behaviour is optimized

The goal of reinforcement learning is to enable systems to autonomously solve tasks in the real world, even in the absence of prior data. To succeed in such situations, reinforcement learning algorithms collect new experience through interactions with the environment to further the learning process. The behaviour is optimized by maximizing a reward function, which assigns high numerical values to desired behaviours. Especially in robotics, such interactions with the environment are expensive in terms of the required execution time, human involvement, and mechanical degradation of the system itself. Therefore, this thesis aims to introduce sample-efficient reinforcement learning methods which are applicable to real-world settings and control tasks such as bimanual manipulation and locomotion. Sample efficiency is achieved through directed exploration, either by using dimensionality reduction or trajectory optimization methods. Finally, it is demonstrated how data-efficient reinforcement learning methods can be used to optimize the behaviour and morphology of robots at the same time.
ContributorsLuck, Kevin Sebastian (Author) / Ben Amor, Hani (Thesis advisor) / Aukes, Daniel (Committee member) / Fainekos, Georgios (Committee member) / Scholz, Jonathan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2019