This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

152324-Thumbnail Image.png
Description
With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human

With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human to provide it some supervisory parameters that modify the degree of autonomy or allocate extra tasks to the robot. In this regard, this thesis presents an approach to include a provision to accept and incorporate such human inputs and modify the navigation functions of the robot accordingly. Concepts such as applying kinematical constraints while planning paths, traversing of unknown areas with an intent of maximizing field of view, performing complex tasks on command etc. have been examined and implemented. The approaches have been tested in Robot Operating System (ROS), using robots such as the iRobot Create, Personal Robotics (PR2) etc. Simulations and experimental demonstrations have proved that this approach is feasible for solving some of the existing problems and that it certainly can pave way to further research for enhancing functionality.
ContributorsVemprala, Sai Hemachandra (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
155083-Thumbnail Image.png
Description
Multi-sensor fusion is a fundamental problem in Robot Perception. For a robot to operate in a real world environment, multiple sensors are often needed. Thus, fusing data from various sensors accurately is vital for robot perception. In the first part of this thesis, the problem of fusing information from a

Multi-sensor fusion is a fundamental problem in Robot Perception. For a robot to operate in a real world environment, multiple sensors are often needed. Thus, fusing data from various sensors accurately is vital for robot perception. In the first part of this thesis, the problem of fusing information from a LIDAR, a color camera and a thermal camera to build RGB-Depth-Thermal (RGBDT) maps is investigated. An algorithm that solves a non-linear optimization problem to compute the relative pose between the cameras and the LIDAR is presented. The relative pose estimate is then used to find the color and thermal texture of each LIDAR point. Next, the various sources of error that can cause the mis-coloring of a LIDAR point after the cross- calibration are identified. Theoretical analyses of these errors reveal that the coloring errors due to noisy LIDAR points, errors in the estimation of the camera matrix, and errors in the estimation of translation between the sensors disappear with distance. But errors in the estimation of the rotation between the sensors causes the coloring error to increase with distance.

On a robot (vehicle) with multiple sensors, sensor fusion algorithms allow us to represent the data in the vehicle frame. But data acquired temporally in the vehicle frame needs to be registered in a global frame to obtain a map of the environment. Mapping techniques involving the Iterative Closest Point (ICP) algorithm and the Normal Distributions Transform (NDT) assume that a good initial estimate of the transformation between the 3D scans is available. This restricts the ability to stitch maps that were acquired at different times. Mapping can become flexible if maps that were acquired temporally can be merged later. To this end, the second part of this thesis focuses on developing an automated algorithm that fuses two maps by finding a congruent set of five points forming a pyramid.

Mapping has various application domains beyond Robot Navigation. The third part of this thesis considers a unique application domain where the surface displace- ments caused by an earthquake are to be recovered using pre- and post-earthquake LIDAR data. A technique to recover the 3D surface displacements is developed and the results are presented on real earthquake datasets: El Mayur Cucupa earthquake, Mexico, 2010 and Fukushima earthquake, Japan, 2011.
ContributorsKrishnan, Aravindhan K (Author) / Saripalli, Srikanth (Thesis advisor) / Klesh, Andrew (Committee member) / Fainekos, Georgios (Committee member) / Thangavelautham, Jekan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2016
157772-Thumbnail Image.png
Description
Computational models for relatively complex systems are subject to many difficulties, among which is the ability for the models to be discretely understandable and applicable to specific problem types and their solutions. This demands the specification of a dynamic system as a collection of models, including metamodels. In this context,

Computational models for relatively complex systems are subject to many difficulties, among which is the ability for the models to be discretely understandable and applicable to specific problem types and their solutions. This demands the specification of a dynamic system as a collection of models, including metamodels. In this context, new modeling approaches and tools can help provide a richer understanding and, therefore, the development of sophisticated behavior in system dynamics. From this vantage point, an activity specification is proposed as a modeling approach based on a time-based discrete event system abstraction. Such models are founded upon set-theoretic principles and methods for modeling and simulation with the intent of making them subject to specific and profound questions for user-defined experiments.

Because developing models is becoming more time-consuming and expensive, some research has focused on the acquisition of concrete means targeted at the early stages of component-based system analysis and design. The model-driven architecture (MDA) framework provides some means for the behavioral modeling of discrete systems. The development of models can benefit from simplifications and elaborations enabled by the MDA meta-layers, which is essential for managing model complexity. Although metamodels pose difficulties, especially for developing complex behavior, as opposed to structure, they are advantageous and complementary to formal models and concrete implementations in programming languages.

The developed approach is focused on action and control concepts across the MDA meta-layers and is proposed for the parallel Discrete Event System Specification (P-DEVS) formalism. The Unified Modeling Language (UML) activity meta-models are used with syntax and semantics that conform to the DEVS formalism and its execution protocol. The notions of the DEVS component and state are used together according to their underlying system-theoretic foundation. A prototype tool supporting activity modeling was developed to demonstrate the degree to which action-based behavior can be modeled using the MDA and DEVS. The parallel DEVS, as a formal approach, supports identifying the semantics of the UML activities. Another prototype was developed to create activity models and support their execution with the DEVS-Suite simulator, and a set of prototypical multiprocessor architecture model specifications were designed, simulated, and analyzed.
ContributorsAlshareef, Abdurrahman (Author) / Sarjoughian, Hessam S. (Thesis advisor) / Fainekos, Georgios (Committee member) / Lee, Joohyung (Committee member) / Zhao, Ming (Committee member) / Arizona State University (Publisher)
Created2019