This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

153477-Thumbnail Image.png
Description
Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act

Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act (IDEA), blind and visually impaired (BVI) students continue to academically fall below the level of their sighted peers in the areas of science and math. Although this deficit is created by many factors, this study focuses on the lack of adequate accessible image based materials. Traditional methods for creating accessible image materials for the vision impaired have included detailed verbal descriptions accompanying an image or conversion into a simplified tactile graphic. It is very common that no substitute materials will be provided to students within STEM courses because they are image rich disciplines and often include a large number images, diagrams and charts. Additionally, images that are translated into text or simplified into basic line drawings are frequently inadequate because they rely on the interpretations of resource personnel who do not have expertise in STEM. Within this study, a method to create a new type of tactile 3D image was developed using High Density Polyethylene (HDPE) and Computer Numeric Control (CNC) milling. These tactile image boards preserve high levels of detail when compared to the original print image. To determine the discernibility and effectiveness of tactile images, these customizable boards were tested in various

university classrooms as well as in participation studies which included BVI and sighted students. Results from these studies indicate that tactile images are discernable and were found to improve performance in lab exercises as much as 60% for those with visual impairment. Incorporating tactile HDPE 3D images into a classroom setting was shown to increase the interest, participation and performance of BVI students suggesting that this type of 3D tactile image should be incorporated into STEM classes to increase the participation of these students and improve the level of training they receive in science and math.
ContributorsGonzales, Ashleigh (Author) / Baluch, Debra P (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2015
161820-Thumbnail Image.png
Description
The desire to start a family is something millions of people around the globe strive to achieve. However, many factors such as the societal changes in family planning due to increasing maternal age, use of birth control, and ever-changing lifestyles have increased the number of infertility cases seen in the

The desire to start a family is something millions of people around the globe strive to achieve. However, many factors such as the societal changes in family planning due to increasing maternal age, use of birth control, and ever-changing lifestyles have increased the number of infertility cases seen in the United States each year. Infertility can manifest as a prolonged inability to conceive, or inability to carry a pregnancy full-term. Modern advancements in the field of reproductive medicine have begun to promote the use of Assisted Reproductive Technologies (ART) to circumvent reduced fertility in both men and women. Implementation of techniques such as In Vitro Fertilization, Intracytoplasmic Sperm Injection, and Pre-Implantation Genetic Testing have allowed many couples to conceive. There is continual effort being made towards developing more effective and personalized fertility treatments. This often begins in the form of animal research—a fundamental step in biomedical research. This dissertation examines infertility as a medical condition through the characterization of normal reproductive anatomy and physiology in the introductory overview of reproduction. Specific pathologies of male and female-factor infertility are described, which necessitates the use of ARTs. The various forms of ARTs currently utilized in a clinical setting are addressed including history, preparations, and protocols for each technology. To promote continual advancement of the field, both animal studies and human trials provide fundamental stepping-stones towards the execution of new techniques and protocols. Examples of research conducted for the betterment of human reproductive medicine are explored, including an animal study conducted in mice exploring the role of tyramine in ovulation. With the development and implementation of new technologies and protocols in the field, this also unearths ethical dilemmas that further complicate the addition of new technologies in the field. Combining an extensive review in assisted reproduction, research and clinical fieldwork, this study investigates the history and development of novel research conducted in reproductive medicine and explores the broader implications of new technologies in the field.
ContributorsPeck, Shelbi Marie (Author) / Baluch, Debra P (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Sweazea, Karen (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2021