This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 90
151771-Thumbnail Image.png
Description
This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing technique for enhanced time-of-flight feature extraction from a dispersive signal; iii) the development of a Bayesian damage localization framework incorporating data association and sensor fusion. The technique requires no additional transducers to be installed on a structure, and allows for the estimation of both the temperature and the wave velocity in the component. Additionally, the framework of the algorithm allows it to function completely in an unsupervised manner by probabilistically accounting for all measurement origin uncertainty. The novel algorithm was experimentally validated using an aluminum lug joint with a growing fatigue crack. The lug joint was interrogated using piezoelectric transducers at multiple fatigue crack lengths, and at temperatures between 20°C and 80°C. The results showed that the algorithm could accurately predict the temperature and wave speed of the lug joint. The localization results for the fatigue damage were found to correlate well with the true locations at long crack lengths, but loss of accuracy was observed in localizing small cracks due to time-of-flight measurement errors. To validate the algorithm across a wider range of temperatures the electromechanically coupled LISA/SIM model was used to simulate the effects of temperatures. The numerical results showed that this approach would be capable of experimentally estimating the temperature and velocity in the lug joint for temperatures from -60°C to 150°C. The velocity estimation algorithm was found to significantly increase the accuracy of localization at temperatures above 120°C when error due to incorrect velocity selection begins to outweigh the error due to time-of-flight measurements.
ContributorsHensberry, Kevin (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
151635-Thumbnail Image.png
Description
Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and

Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and poet Willa Cather (1873-1947). Larsen has produced two song cycles on works from Cather's substantial output of fiction: one based on Cather's short story, "Eric Hermannson's Soul," titled Margaret Songs: Three Songs from Willa Cather (1996); and later, My Antonia (2000), based on Cather's novel of the same title. In Margaret Songs, Cather's poetry and short stories--specifically the character of Margaret Elliot--combine with Larsen's unique compositional style to create a surprising collaboration. This study explores how Larsen in these songs delves into the emotional and psychological depths of Margaret's character, not fully formed by Cather. It is only through Larsen's music and Cather's poetry that Margaret's journey through self-discovery and love become fully realized. This song cycle is a glimpse through the eyes of two prominent female artists on the societal pressures placed upon Margaret's character, many of which still resonate with women in today's culture. This study examines the work Margaret Songs by discussing Willa Cather, her musical influences, and the conditions surrounding the writing of "Eric Hermannson's Soul." It looks also into Cather's influence on Libby Larsen and the commission leading to Margaret Songs. Finally, a description of the musical, dramatic, and textual content of the songs completes this interpretation of the interactions of Willa Cather, Libby Larsen, and the character of Margaret Elliot.
ContributorsMcLain, Christi Marie (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Holbrook, Amy (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
151377-Thumbnail Image.png
Description
Arnold Schoenberg's 1908-09 song cycle, Das Buch der hängenden Gärten [The Book of the Hanging Gardens], opus 15, represents one of his most decisive early steps into the realm of musical modernism. In the midst of personal and artistic crises, Schoenberg set texts by Stefan George in a style he

Arnold Schoenberg's 1908-09 song cycle, Das Buch der hängenden Gärten [The Book of the Hanging Gardens], opus 15, represents one of his most decisive early steps into the realm of musical modernism. In the midst of personal and artistic crises, Schoenberg set texts by Stefan George in a style he called "pantonality," and described his composition as radically new. Though stylistically progressive, however, Schoenberg's musical achievement had certain ideologically conservative roots: the composer numbered among turn-of-the-century Viennese artists and thinkers whose opposition to the conventional and the popular--in favor of artistic autonomy and creativity--concealed a reactionary misogyny. A critical reading of Hanging Gardens through the lens of gender reveals that Schoenberg, like many of his contemporaries, incorporated strong frauenfeindlich [anti-women] elements into his work, through his modernist account of artistic creativity, his choice of texts, and his musical settings. Although elements of Hanging Gardens' atonal music suggest that Schoenberg valued gendered-feminine principles in his compositional style, a closer analysis of the work's musical language shows an intact masculinist hegemony. Through his deployment of uncanny tonal reminiscences, underlying tonal gestures, and closed forms in Hanging Gardens, Schoenberg ensures that the feminine-associated "excesses" of atonality remain under masculine control. This study draws upon the critical musicology of Susan McClary while arguing that Schoenberg's music is socially contingent, affected by the gender biases of his social and literary milieux. It addresses likely influences on Schoenberg's worldview including the philosophy of Otto Weininger, Freudian psychoanalysis, and a complex web of personal relationships. Finally, this analysis highlights the relevance of Schoenberg's world and its constructions of gender to modern performance practice, and argues that performers must consider interrelated historical, textual, and musical factors when interpreting Hanging Gardens in new contexts.
ContributorsGinger, Kerry Anne (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Mook, Richard (Committee member) / Norton, Kay (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2012
151384-Thumbnail Image.png
Description
ABSTRACT This document introduces singers and voice teachers to Dr. Alfred A. Tomatis's listening training method with a particular emphasis on its relevance to singers. After presenting an overview of Tomatis's work in the field of audio-psycho-phonology (circa 1947 through the 1990s) and specific ways that aspects of his theory

ABSTRACT This document introduces singers and voice teachers to Dr. Alfred A. Tomatis's listening training method with a particular emphasis on its relevance to singers. After presenting an overview of Tomatis's work in the field of audio-psycho-phonology (circa 1947 through the 1990s) and specific ways that aspects of his theory are relevant to singers' performance skills, this project investigates the impact of listening training on singers by examining published research. The studies described in this document have investigated the impact of listening training on elements of the singer's skill set, including but not limited to measures of vocal quality such as intonation, vocal control, intensity, and sonority, as well as language pronunciation and general musicianship. Anecdotal evidence, presented by performers and their observers, is also considered. The evidence generated by research studies and anecdotal reports strongly favors Tomatis-based listening training as a valid way to improve singers' performance abilities.
ContributorsHurley, Susan Lynn (Author) / Doan, Jerry (Thesis advisor) / Dreyfoos, Dale (Committee member) / Kopta, Anne (Committee member) / Norton, Kay (Committee member) / Thompson, Billie M (Committee member) / Arizona State University (Publisher)
Created2012
151621-Thumbnail Image.png
Description
The trained singer utilizes an awareness of her body as an instrument. When she becomes pregnant, her body changes in numerous ways to support the pregnancy. Many of these changes have great impact on her ability to sing during the pregnancy and postpartum periods. The voice may be altered positively

The trained singer utilizes an awareness of her body as an instrument. When she becomes pregnant, her body changes in numerous ways to support the pregnancy. Many of these changes have great impact on her ability to sing during the pregnancy and postpartum periods. The voice may be altered positively or negatively by the release of hormones. The body undergoes many changes that affect the posture and breathing required for singing. Most notably, the abdominal muscles are greatly impacted by the pregnancy. They are stretched by the growing uterus, and this affects their function. In addition, the linea alba (the connective tissue between the halves of the rectus abdominis) is softened by hormonal increases and subject to stretching as the uterus grows, predisposing it to weakness. Since the other abdominal muscles attach to the linea alba via connective tissue, maintaining the integrity of the linea alba during pregnancy and postpartum is vital to the operational function of the abdominal muscles. Protecting the vulnerable linea alba must be deliberately undertaken in two parts. First, conscious exercise is needed to preserve the linea alba during pregnancy and to rehabilitate it after pregnancy. Targeted exercises strengthen the transverse abdominis and shorten and approximate the two halves of the rectus abdominis. Second, modifications in daily movement are necessary to protect the linea alba while performing routine activities. Cesarean sections present additional surgical concerns for singers, including abdominal incisions, use of medication, and the rare need for general anesthesia via intubation. Recovery from a cesarean can be difficult due to abdominal pain, yet steps may be taken to speed healing at the hospital and at home. This paper provides an overview of how pregnancy affects the singer, discusses the effects of pregnancy and cesarean section, and provides a plan to protect the abdominal muscles during pregnancy and rehabilitate them in the postpartum period. It combines information from the fields of physical therapy, medicine, and surgery into a guide for the singer and voice teacher.
ContributorsWill, Andrea Pitman (Author) / Doan, Jerry (Thesis advisor) / Elgar Kopta, Anne (Thesis advisor) / Dreyfoos, Dale (Committee member) / Mills, Robert (Committee member) / Oldani, Robert W (Committee member) / Arizona State University (Publisher)
Created2013
152497-Thumbnail Image.png
Description
This paper and its accompanying recital examine three solo vocal works by Italian composer Alfredo Casella (1883-1947): "Larmes" from Cinq Mélodies (Op. 2); "Mort, ta servante est à ma porte" from L'adieu à la vie: Quatre lyriques funèbres extraites du "Gitanjali" de Rabindranath Tagore (Op. 26); and "Amante sono, vaghiccia,

This paper and its accompanying recital examine three solo vocal works by Italian composer Alfredo Casella (1883-1947): "Larmes" from Cinq Mélodies (Op. 2); "Mort, ta servante est à ma porte" from L'adieu à la vie: Quatre lyriques funèbres extraites du "Gitanjali" de Rabindranath Tagore (Op. 26); and "Amante sono, vaghiccia, di voi" from Tre canzoni trecentesche (Op. 36). Each of these songs is discussed as representative of Casella's three compositional periods. A fourth song, "Ecce odor filii mei" from Tre canti sacri per baritono et organo (Op. 66), is also examined, as an end-of-life composition. Some of the more important solo vocal works composed in each period are mentioned to show where the four selected songs fit into Casella's compositional output and to suggest music for further study or repertoire.
ContributorsGordon, Stefan (Author) / Mills, Robert (Thesis advisor) / Holbrook, Amy (Committee member) / FitzPatrick, Carole (Committee member) / Dreyfoos, Dale (Committee member) / Arizona State University (Publisher)
Created2014
152510-Thumbnail Image.png
Description
Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two

Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using differential-aperture X-ray structural microscopy (DAXM), from which peak-broadening characteristics were quantified. Plasticity, as determined by the broadening of diffracted peaks, was mapped in 3D. Two-dimensional (2D) maps of plasticity were directly compared to the corresponding tomography slices. A 3D representation of the plastic zone surrounding the fatigue crack was generated by superimposing the mapped plasticity on the 3D crack profile.
ContributorsHruby, Peter (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014
Description
The purpose of this study is to examine and explore Hatha Yoga and how it relates to a practice consisting of singer-friendly yoga postures, how these postures may benefit the singer's mental and physical health, and how these techniques relate to designated research. The study also investigates yogic breathing techniques

The purpose of this study is to examine and explore Hatha Yoga and how it relates to a practice consisting of singer-friendly yoga postures, how these postures may benefit the singer's mental and physical health, and how these techniques relate to designated research. The study also investigates yogic breathing techniques and how these exercises relate to selected research. Lastly, the paper examines how the voice student and professional singer may alleviate anxiety by introducing a practice of daily yogic mediation of mudra and mantra techniques, and how voice teachers may better understand and assist their students with stage performance anxiety.
ContributorsHutton, Christopher (Singer) (Author) / Rogers, Rodney (Thesis advisor) / Doan, Jerry (Committee member) / Dreyfoos, Dale (Committee member) / Kopta, Anne (Committee member) / May, Judy (Committee member) / Arizona State University (Publisher)
Created2014
Description
From the time it was written, the aria "Largo al factotum" from Rossini's Il barbiere di Siviglia has been performed and ornamented in many different ways. The present study is an inventory and analysis of ornaments sung in 33 recordings from 1900 to 2011 and the major differences that they

From the time it was written, the aria "Largo al factotum" from Rossini's Il barbiere di Siviglia has been performed and ornamented in many different ways. The present study is an inventory and analysis of ornaments sung in 33 recordings from 1900 to 2011 and the major differences that they exhibit one from another. The singers in this study are baritones with international careers, who have performed the role of Figaro either at the Metropolitan Opera (New York) or at La Scala (Milan). The study identifies and tracks some of the changes in the ornamentation of the aria by noting common traits and new approaches across the one hundred eleven years of practice illustrated by the recordings.
ContributorsBriggs, Andrew Nathan (Author) / Mills, Robert (Committee member) / Oldani, Robert (Committee member) / Dreyfoos, Dale (Committee member) / FitzPatrick, Carole (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2014
152962-Thumbnail Image.png
Description
This research focuses on the benefits of using nanocomposites in aerospace structural components to prevent or delay the onset of unique composite failure modes, such as delamination. Analytical, numerical, and experimental analyses were conducted to provide a comprehensive understanding of how carbon nanotubes (CNTs) can provide additional structural integrity when

This research focuses on the benefits of using nanocomposites in aerospace structural components to prevent or delay the onset of unique composite failure modes, such as delamination. Analytical, numerical, and experimental analyses were conducted to provide a comprehensive understanding of how carbon nanotubes (CNTs) can provide additional structural integrity when they are used in specific hot spots within a structure. A multiscale approach was implemented to determine the mechanical and thermal properties of the nanocomposites, which were used in detailed finite element models (FEMs) to analyze interlaminar failures in T and Hat section stringers. The delamination that first occurs between the tow filler and the bondline between the stringer and skin was of particular interest. Both locations are considered to be hot spots in such structural components, and failures tend to initiate from these areas. In this research, nanocomposite use was investigated as an alternative to traditional methods of suppressing delamination. The stringer was analyzed under different loading conditions and assuming different structural defects. Initial damage, defined as the first drop in the load displacement curve was considered to be a useful variable to compare the different behaviors in this study and was detected via the virtual crack closure technique (VCCT) implemented in the FE analysis.

Experiments were conducted to test T section skin/stringer specimens under pull-off loading, replicating those used in composite panels as stiffeners. Two types of designs were considered: one using pure epoxy to fill the tow region and another that used nanocomposite with 5 wt. % CNTs. The response variable in the tests was the initial damage. Detailed analyses were conducted using FEMs to correlate with the experimental data. The correlation between both the experiment and model was satisfactory. Finally, the effects of thermal cure and temperature variation on nanocomposite structure behavior were studied, and both variables were determined to influence the nanocomposite structure performance.
ContributorsHasan, Zeaid (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Rajadas, John (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2014