This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

153094-Thumbnail Image.png
Description
Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of private information. This thesis is aimed at understanding, analyzing and

Android is currently the most widely used mobile operating system. The permission model in Android governs the resource access privileges of applications. The permission model however is amenable to various attacks, including re-delegation attacks, background snooping attacks and disclosure of private information. This thesis is aimed at understanding, analyzing and performing forensics on application behavior. This research sheds light on several security aspects, including the use of inter-process communications (IPC) to perform permission re-delegation attacks.

Android permission system is more of app-driven rather than user controlled, which means it is the applications that specify their permission requirement and the only thing which the user can do is choose not to install a particular application based on the requirements. Given the all or nothing choice, users succumb to pressures and needs to accept permissions requested. This thesis proposes a couple of ways for providing the users finer grained control of application privileges. The same methods can be used to evade the Permission Re-delegation attack.

This thesis also proposes and implements a novel methodology in Android that can be used to control the access privileges of an Android application, taking into consideration the context of the running application. This application-context based permission usage is further used to analyze a set of sample applications. We found the evidence of applications spoofing or divulging user sensitive information such as location information, contact information, phone id and numbers, in the background. Such activities can be used to track users for a variety of privacy-intrusive purposes. We have developed implementations that minimize several forms of privacy leaks that are routinely done by stock applications.
ContributorsGollapudi, Narasimha Aditya (Author) / Dasgupta, Partha (Thesis advisor) / Xue, Guoliang (Committee member) / Doupe, Adam (Committee member) / Arizona State University (Publisher)
Created2014
168710-Thumbnail Image.png
Description
The omnipresent data, growing number of network devices, and evolving attack techniques have been challenging organizations’ security defenses over the past decade. With humongous volumes of logs generated by those network devices, looking for patterns of malicious activities and identifying them in time is growing beyond the capabilities of their

The omnipresent data, growing number of network devices, and evolving attack techniques have been challenging organizations’ security defenses over the past decade. With humongous volumes of logs generated by those network devices, looking for patterns of malicious activities and identifying them in time is growing beyond the capabilities of their defense systems. Deep Learning, a subset of Machine Learning (ML) and Artificial Intelligence (AI), fills in this gapwith its ability to learn from huge amounts of data, and improve its performance as the data it learns from increases. In this dissertation, I bring forward security issues pertaining to two top threats that most organizations fear, Advanced Persistent Threat (APT), and Distributed Denial of Service (DDoS), along with deep learning models built towards addressing those security issues. First, I present a deep learning model, APT Detection, capable of detecting anomalous activities in a system. Evaluation of this model demonstrates how it can contribute to early detection of an APT attack with an Area Under the Curve (AUC) of up to 91% on a Receiver Operating Characteristic (ROC) curve. Second, I present DAPT2020, a first of its kind dataset capturing an APT attack exploiting web and system vulnerabilities in an emulated organization’s production network. Evaluation of the dataset using well known machine learning models demonstrates the need for better deep learning models to detect APT attacks. I then present DAPT2021, a semi-synthetic dataset capturing an APT attackexploiting human vulnerabilities, alongside 2 less skilled attacks. By emulating the normal behavior of the employees in a set target organization, DAPT2021 has been created to enable researchers study the causations and correlations among the captured data, a much-needed information to detect an underlying threat early. Finally, I present a distributed defense framework, SmartDefense, that can detect and mitigate over 90% of DDoS traffic at the source and over 97.5% of the remaining DDoS traffic at the Internet Service Provider’s (ISP’s) edge network. Evaluation of this work shows how by using attributes sent by customer edge network, SmartDefense can further help ISPs prevent up to 51.95% of the DDoS traffic from going to the destination.
ContributorsMyneni, Sowmya (Author) / Xue, Guoliang (Thesis advisor) / Doupe, Adam (Committee member) / Li, Baoxin (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2022