This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

156290-Thumbnail Image.png
Description
Data breaches have been on a rise and financial sector is among the top targeted. It can take a few months and upto a few years to identify the occurrence of a data breach. A major motivation behind data breaches is financial gain, hence most of the data ends u

Data breaches have been on a rise and financial sector is among the top targeted. It can take a few months and upto a few years to identify the occurrence of a data breach. A major motivation behind data breaches is financial gain, hence most of the data ends up being on sale on the darkweb websites. It is important to identify sale of such stolen information on a timely and relevant manner. In this research, we present a system for timely identification of sale of stolen data on darkweb websites. We frame identifying sale of stolen data as a multi-label classification problem and leverage several machine learning approaches based on the thread content (textual) and social network analysis of the user communication seen on darkweb websites. The system generates alerts about trends based on popularity amongst the users of such websites. We evaluate our system using the K-fold cross validation as well as manual evaluation of blind (unseen) data. The method of combining social network and textual features outperforms baseline method i.e only using textual features, by 15 to 20 % improved precision. The alerts provide a good insight and we illustrate our findings by cases studies of the results.
ContributorsDharaiya, Krishna Tushar (Author) / Shakarian, Paulo (Thesis advisor) / Doupe, Adam (Committee member) / Shoshitaishvili, Yan (Committee member) / Arizona State University (Publisher)
Created2018
156125-Thumbnail Image.png
Description
In this research, I try to solve multi-class multi-label classication problem, where

the goal is to automatically assign one or more labels(tags) to discussion topics seen

in deepweb. I observed natural hierarchy in our dataset, and I used dierent

techniques to ensure hierarchical integrity constraint on the predicted tag list. To

solve `class imbalance'

In this research, I try to solve multi-class multi-label classication problem, where

the goal is to automatically assign one or more labels(tags) to discussion topics seen

in deepweb. I observed natural hierarchy in our dataset, and I used dierent

techniques to ensure hierarchical integrity constraint on the predicted tag list. To

solve `class imbalance' and `scarcity of labeled data' problems, I developed semisupervised

model based on elastic search(ES) document relevance score. I evaluate

our models using standard K-fold cross-validation method. Ensuring hierarchical

integrity constraints improved F1 score by 11.9% over standard supervised learning,

while our ES based semi-supervised learning model out-performed other models in

terms of precision(78.4%) score while maintaining comparable recall(21%) score.
ContributorsPatil, Revanth (Author) / Shakarian, Paulo (Thesis advisor) / Doupe, Adam (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2018
135242-Thumbnail Image.png
Description
Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply

Penetration testing is regarded as the gold-standard for understanding how well an organization can withstand sophisticated cyber-attacks. However, the recent prevalence of markets specializing in zero-day exploits on the darknet make exploits widely available to potential attackers. The cost associated with these sophisticated kits generally precludes penetration testers from simply obtaining such exploits – so an alternative approach is needed to understand what exploits an attacker will most likely purchase and how to defend against them. In this paper, we introduce a data-driven security game framework to model an attacker and provide policy recommendations to the defender. In addition to providing a formal framework and algorithms to develop strategies, we present experimental results from applying our framework, for various system configurations, on real-world exploit market data actively mined from the darknet.
ContributorsRobertson, John James (Author) / Shakarian, Paulo (Thesis director) / Doupe, Adam (Committee member) / Electrical Engineering Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
158434-Thumbnail Image.png
Description
Malicious hackers utilize the World Wide Web to share knowledge. Previous work has demonstrated that information mined from online hacking communities can be used as precursors to cyber-attacks. In a threatening scenario, where security alert systems are facing high false positive rates, understanding the people behind cyber incidents can hel

Malicious hackers utilize the World Wide Web to share knowledge. Previous work has demonstrated that information mined from online hacking communities can be used as precursors to cyber-attacks. In a threatening scenario, where security alert systems are facing high false positive rates, understanding the people behind cyber incidents can help reduce the risk of attacks. However, the rapidly evolving nature of those communities leads to limitations still largely unexplored, such as: who are the skilled and influential individuals forming those groups, how they self-organize along the lines of technical expertise, how ideas propagate within them, and which internal patterns can signal imminent cyber offensives? In this dissertation, I have studied four key parts of this complex problem set. Initially, I leverage content, social network, and seniority analysis to mine key-hackers on darkweb forums, identifying skilled and influential individuals who are likely to succeed in their cybercriminal goals. Next, as hackers often use Web platforms to advertise and recruit collaborators, I analyze how social influence contributes to user engagement online. On social media, two time constraints are proposed to extend standard influence measures, which increases their correlation with adoption probability and consequently improves hashtag adoption prediction. On darkweb forums, the prediction of where and when hackers will post a message in the near future is accomplished by analyzing their recurrent interactions with other hackers. After that, I demonstrate how vendors of malware and malicious exploits organically form hidden organizations on darkweb marketplaces, obtaining significant consistency across the vendors’ communities extracted using the similarity of their products in different networks. Finally, I predict imminent cyber-attacks correlating malicious hacking activity on darkweb forums with real-world cyber incidents, evidencing how social indicators are crucial for the performance of the proposed model. This research is a hybrid of social network analysis (SNA), machine learning (ML), evolutionary computation (EC), and temporal logic (TL), presenting expressive contributions to empower cyber defense.
ContributorsSantana Marin, Ericsson (Author) / Shakarian, Paulo (Thesis advisor) / Doupe, Adam (Committee member) / Liu, Huan (Committee member) / Ferrara, Emilio (Committee member) / Arizona State University (Publisher)
Created2020