This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

151271-Thumbnail Image.png
Description
Humans moving in the environment must frequently change walking speed and direction to negotiate obstacles and maintain balance. Maneuverability and stability requirements account for a significant part of daily life. While constant-average-velocity (CAV) human locomotion in walking and running has been studied extensively unsteady locomotion has received far less attention.

Humans moving in the environment must frequently change walking speed and direction to negotiate obstacles and maintain balance. Maneuverability and stability requirements account for a significant part of daily life. While constant-average-velocity (CAV) human locomotion in walking and running has been studied extensively unsteady locomotion has received far less attention. Although some studies have described the biomechanics and neurophysiology of maneuvers, the underlying mechanisms that humans employ to control unsteady running are still not clear. My dissertation research investigated some of the biomechanical and behavioral strategies used for stable unsteady locomotion. First, I studied the behavioral level control of human sagittal plane running. I tested whether humans could control running using strategies consistent with simple and independent control laws that have been successfully used to control monopod robots. I found that humans use strategies that are consistent with the distributed feedback control strategies used by bouncing robots. Humans changed leg force rather than stance duration to control center of mass (COM) height. Humans adjusted foot placement relative to a "neutral point" to change running speed increment between consecutive flight phases, i.e. a "pogo-stick" rather than a "unicycle" strategy was adopted to change running speed. Body pitch angle was correlated by hip moments if a proportional-derivative relationship with time lags corresponding to pre-programmed reaction (87 ± 19 ms) was assumed. To better understand the mechanisms of performing successful maneuvers, I studied the functions of joints in the lower extremities to control COM speed and height. I found that during stance, the hip functioned as a power generator to change speed. The ankle switched between roles as a damper and torsional spring to contributing both to speed and elevation changes. The knee facilitated both speed and elevation control by absorbing mechanical energy, although its contribution was less than hip or ankle. Finally, I studied human turning in the horizontal plane. I used a morphological perturbation (increased body rotational inertia) to elicit compensational strategies used to control sidestep cutting turns. Humans use changes to initial body angular speed and body pre-rotation to prevent changes in braking forces.
ContributorsQiao, Mu, 1981- (Author) / Jindrich, Devin L (Thesis advisor) / Dounskaia, Natalia (Committee member) / Abbas, James (Committee member) / Hinrichs, Richard (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2012
134919-Thumbnail Image.png
Description
Rotator cuff tears (RCT) can affect up to 50% of the older population and this injury is typically associated with functional deficits and shoulder pain that prevent people from living a typical lifestyle. Particularly in an older population, this type of pain increases functional dependency on others and can hinder

Rotator cuff tears (RCT) can affect up to 50% of the older population and this injury is typically associated with functional deficits and shoulder pain that prevent people from living a typical lifestyle. Particularly in an older population, this type of pain increases functional dependency on others and can hinder the possibility of independent living. An area of shoulder pathology that lacks research is the functional differences in symptomatic and asymptomatic tears on activities of daily living (ADL). In order to more fully understand the functional presentations associated with each of these types of tears, it is critical that we evaluate the various mechanisms that contribute to altered movement patterns. Understanding these different compensatory patterns between asymptomatic and symptomatic tears will allow for a better understanding of the presentation of this shoulder pathology and provide new insight for diagnostic and rehabilitation purposes. Therefore, the objective of this study is to quantify kinematic differences of daily upper limb movements between symptomatic and asymptomatic RCTs in an older population. To accomplish this goal, we will be using motion capture and electromyography to assess typical ADL movements and their associated muscle activation patterns during 2D and 3D tasks in older adults (≥55 years). Strength and shoulder range of motion measures will also be taken, as well as self-reported measures of function and pain. Through this project, we seek to understand the presentation of RCTs and what characteristics are associated with symptoms. Long term, outcomes from this work will be used to develop a more standardized approach to early detection and treatment of this common shoulder pathology in the older adult population.
ContributorsFujita, Hikaru Ashley (Author) / Vidt, Meghan (Thesis director) / Dounskaia, Natalia (Committee member) / School of Nutrition and Health Promotion (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
152912-Thumbnail Image.png
Description
During the downswing all golfers must roll their forearms and twist the club handle in order to square the club face into impact. Anecdotally some instructors say that rapidly twisting the handle and quickly closing the club face is the best technique while others disagree and suggest the opposite.

During the downswing all golfers must roll their forearms and twist the club handle in order to square the club face into impact. Anecdotally some instructors say that rapidly twisting the handle and quickly closing the club face is the best technique while others disagree and suggest the opposite. World class golfers have swings with a range of club handle twist velocities (HTV) from very slow to very fast and either method appears to create a successful swing. The purpose of this research was to discover the relationship between HTV at impact and selected body and club biomechanical characteristics during a driver swing. Three-dimensional motion analysis methods were used to capture the swings of 94 tour professionals. Pearson product-moment correlation was used to determine if a correlation existed between HTV and selected biomechanical characteristics. The total group was also divided into two sub-groups of 32, one group with the fastest HTV (Hi-HTV) and the other with the slowest HTV (Lo-HTV). Single factor ANOVAs were completed for HTV and each selected biomechanical parameter. No significant differences were found between the Hi-HTV and Lo-HTV groups for both clubhead speed and driving accuracy. Lead forearm supination velocity at impact was found to be significantly different between groups with the Hi-HTV group having a higher velocity. Lead wrist extension velocity at impact, while not being significantly different between groups was found to be positive in both groups, meaning that the lead wrist is extending at impact. Lead wrist ulnar deviation, lead wrist release and trail elbow extension velocities at maximum were not significantly different between groups. Pelvis rotation, thorax rotation, pelvis side bend and pelvis rotation at impact were all significantly different between groups, with the Lo-HTV group being more side bent tor the trail side and more open at impact. These results suggest that world class golfers can successfully use either the low or high HTV technique for a successful swing. From an instructional perspective it is important to be aware of the body posture and wrist/forearm motion differences between the two techniques so as to be consistent when teaching either method.
ContributorsCheetham, Phillip (Author) / Hinrichs, Richard (Thesis advisor) / Ringenbach, Shannon (Committee member) / Dounskaia, Natalia (Committee member) / Crews, Debra (Committee member) / Arizona State University (Publisher)
Created2014
133156-Thumbnail Image.png
Description
According to the Center for Disease Control, 1 in every 3 individuals will fall in their lifetime. Treadmill perturbation training has been a beneficial tool to increase reactive postural control and decrease the amount of falls. This study looked at the extent of the training effects on 29 healthy young

According to the Center for Disease Control, 1 in every 3 individuals will fall in their lifetime. Treadmill perturbation training has been a beneficial tool to increase reactive postural control and decrease the amount of falls. This study looked at the extent of the training effects on 29 healthy young adults to evaluate if stepping improvements in one direction could generalize to improvements in the quality of stepping in other directions. Outcome variables of Margin of Stability (MOS), step length, and step latency were evaluated for all 15 participants trained with forward perturbations and 14 participants trained with backward perturbations. From the paired t-tests, there were limited significant improvements in stepping with regards to motor learning and generalization. The only significant outcome was an increase in step length for the participants who trained in the backward direction (p=0.014; p<0.05). However, this significant increase in step length for this backward group did not generalize when the participants stepped in the forward direction post training. From the correlation tests, there was a significant, moderate correlation between motor learning and generalization (rho =0.527, p= 0.043; p<0.05), thus suggesting there may be a relationship between the amount of learning and the amount of generalization observed. Further evaluation of the second step and the foot motion during stepping may reveal more information and explain the changes in stepping to describe how healthy young adults were able to regain balance with each perturbation given.
ContributorsNowak, Rachael Teresa (Author) / Peterson, Daniel (Thesis director) / Dounskaia, Natalia (Committee member) / School of Nutrition and Health Promotion (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12