This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

190767-Thumbnail Image.png
Description
The proliferation of plastic has created a wicked global sustainability challenge. From the extraction of fossil fuels to end-of-life management and pollution, plastic imposes significant negative impacts to human health, economic well-being, and the environment. One proposed solution is to replace conventional plastic with biomass-based plastics and plastic alternatives (BBPAs),

The proliferation of plastic has created a wicked global sustainability challenge. From the extraction of fossil fuels to end-of-life management and pollution, plastic imposes significant negative impacts to human health, economic well-being, and the environment. One proposed solution is to replace conventional plastic with biomass-based plastics and plastic alternatives (BBPAs), such as paper or bio-based plastics. While these products may have advantageous properties, they require biomass as a feedstock. Given the scale of the plastics problem, this biomass demand may be significant. In my dissertation, I evaluate the magnitude of biomass required, and assess the potential impact of this biomass demand on global land use. After examining the scope and the scale of the problem in chapter one, I evaluate the assumptions that have been made regarding the land-use impacts of BBPAs in chapter two. In chapter three, I use a global land-system model (CLUMondo) to evaluate the potential land-use change of large-scale production of BBPAs. In chapter four, I evaluate how certification schemes could be used as a policy tool to mitigate the land-use impacts of bio-based alternatives. I find that the current studies evaluating the land-use impacts of these products make optimistic and unrealistic assumptions regarding land-use. Using a global model, I show how high production scenarios of BBPAs could induce significant land-use change at the global level. Finally, I demonstrate that reliance on certification schemes would likely be insufficient to prevent negative impacts from this scale of land change. Overall, this dissertation suggests that large-scale replacement of plastic with BBPAs could incur significant land-use impacts. Policies designed to mitigate the impacts of plastic need to account for this impact to land-use, lest they risk substituting one global problem for another.
ContributorsHelm, Levi (Author) / Kinzig, Ann (Thesis advisor) / Dooley, Kevin (Committee member) / Turner II, Billie (Committee member) / Verburg, Peter (Committee member) / Arizona State University (Publisher)
Created2023
Description
An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs,

An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs, when compared with standard industrial resource sharing networks, prove to be of greater public advantage as they offer improved environmental and economic benefits, and higher operational efficiencies both upstream and downstream in their supply chain.

Although there have been many attempts to adapt EIP methodology to existing industrial sharing networks, most of them have failed for various factors: geographic restrictions by governmental organizations on use of technology, cost of technology, the inability of industries to effectively communicate their upstream and downstream resource usage, and to diminishing natural resources such as water, land and non-renewable energy (NRE) sources for energy production.

This paper presents a feasibility study conducted to evaluate the comparative environmental, economic, and geographic impacts arising from the use of renewable energy (RE) and NRE to power EIPs. Life Cycle Assessment (LCA) methodology, which is used in a variety of sectors to evaluate the environmental merits and demerits of different kinds of products and processes, was employed for comparison between these two energy production methods based on factors such as greenhouse gas emission, acidification potential, eutrophication potential, human toxicity potential, fresh water usage and land usage. To complement the environmental LCA analysis, levelized cost of electricity was used to evaluate the economic impact. This model was analyzed for two different geographic locations; United States and Europe, for 12 different energy production technologies.

The outcome of this study points out the environmental, economic and geographic superiority of one energy source over the other, including the total carbon dioxide equivalent emissions, which can then be related to the total number of carbon credits that can be earned or used to mitigate the overall carbon emission and move closer towards a net zero carbon footprint goal thus making the EIPs truly sustainable.
ContributorsGupta, Vaibhav (Author) / Calhoun, Ronald J (Thesis advisor) / Dooley, Kevin (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2014