This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

187831-Thumbnail Image.png
Description
This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize

This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize a decent basketball shot pattern? - by introducing a supervised learning paradigm, where the ML method takes acceleration attributes to predict the basketball shot efficiency. The solution presented in this study considers motion capture devices configuration on the right upper limb with a sole motion sensor made by BNO080 and ESP32 attached on the right wrist, right forearm, and right shoulder, respectively, By observing the rate of speed changing in the shooting movement and comparing their performance, ML models that apply K-Nearest Neighbor, and Decision Tree algorithm, conclude the best range of acceleration that different spots on the arm should implement.
ContributorsLiang, Chengxu (Author) / Ingalls, Todd (Thesis advisor) / Turaga, Pavan (Thesis advisor) / De Luca, Gennaro (Committee member) / Arizona State University (Publisher)
Created2023
161945-Thumbnail Image.png
Description
Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken as a two-dimensional embedding in space. On the other hand,

Statistical Shape Modeling is widely used to study the morphometrics of deformable objects in computer vision and biomedical studies. There are mainly two viewpoints to understand the shapes. On one hand, the outer surface of the shape can be taken as a two-dimensional embedding in space. On the other hand, the outer surface along with its enclosed internal volume can be taken as a three-dimensional embedding of interests. Most studies focus on the surface-based perspective by leveraging the intrinsic features on the tangent plane. But a two-dimensional model may fail to fully represent the realistic properties of shapes with both intrinsic and extrinsic properties. In this thesis, severalStochastic Partial Differential Equations (SPDEs) are thoroughly investigated and several methods are originated from these SPDEs to try to solve the problem of both two-dimensional and three-dimensional shape analyses. The unique physical meanings of these SPDEs inspired the findings of features, shape descriptors, metrics, and kernels in this series of works. Initially, the data generation of high-dimensional shapes, here, the tetrahedral meshes, is introduced. The cerebral cortex is taken as the study target and an automatic pipeline of generating the gray matter tetrahedral mesh is introduced. Then, a discretized Laplace-Beltrami operator (LBO) and a Hamiltonian operator (HO) in tetrahedral domain with Finite Element Method (FEM) are derived. Two high-dimensional shape descriptors are defined based on the solution of the heat equation and Schrödinger’s equation. Considering the fact that high-dimensional shape models usually contain massive redundancies, and the demands on effective landmarks in many applications, a Gaussian process landmarking on tetrahedral meshes is further studied. A SIWKS-based metric space is used to define a geometry-aware Gaussian process. The study of the periodic potential diffusion process further inspired the idea of a new kernel call the geometry-aware convolutional kernel. A series of Bayesian learning methods are then introduced to tackle the problem of shape retrieval and classification. Experiments of every single item are demonstrated. From the popular SPDE such as the heat equation and Schrödinger’s equation to the general potential diffusion equation and the specific periodic potential diffusion equation, it clearly shows that classical SPDEs play an important role in discovering new features, metrics, shape descriptors and kernels. I hope this thesis could be an example of using interdisciplinary knowledge to solve problems.
ContributorsFan, Yonghui (Author) / Wang, Yalin (Thesis advisor) / Lepore, Natasha (Committee member) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021