This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

187831-Thumbnail Image.png
Description
This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize

This project explores the potential for the accurate prediction of basketball shooting posture with machine learning (ML) prediction algorithms, using the data collected by an Internet of Things (IoT) based motion capture system. Specifically, this question is addressed in the research - Can I develop an ML model to generalize a decent basketball shot pattern? - by introducing a supervised learning paradigm, where the ML method takes acceleration attributes to predict the basketball shot efficiency. The solution presented in this study considers motion capture devices configuration on the right upper limb with a sole motion sensor made by BNO080 and ESP32 attached on the right wrist, right forearm, and right shoulder, respectively, By observing the rate of speed changing in the shooting movement and comparing their performance, ML models that apply K-Nearest Neighbor, and Decision Tree algorithm, conclude the best range of acceleration that different spots on the arm should implement.
ContributorsLiang, Chengxu (Author) / Ingalls, Todd (Thesis advisor) / Turaga, Pavan (Thesis advisor) / De Luca, Gennaro (Committee member) / Arizona State University (Publisher)
Created2023
Description

In this thesis, I explored the interconnected ways in which human experience can shape and be shaped by environments of the future, such as interactive environments and spaces, embedded with sensors, enlivened by advanced algorithms for sensor data processing. I have developed an abstract representational experience into the vast and

In this thesis, I explored the interconnected ways in which human experience can shape and be shaped by environments of the future, such as interactive environments and spaces, embedded with sensors, enlivened by advanced algorithms for sensor data processing. I have developed an abstract representational experience into the vast and continual journey through life that shapes how we can use sensory immersion. The experimental work was housed in the iStage: an advanced black box space in the School of Arts, Media, and Engineering, which consists of video cameras, motion capture systems, spatial audio systems, and controllable lighting and projector systems. The malleable and interactive space of the iStage transformed into a reflective tool in which to gain insight into the overall shared, but very individual, emotional odyssey. Additionally, I surveyed participants after engaging in the experience to better understand their perceptions and interpretations of the experience. With the responses of participants' experiences and collective reflection upon the project I can begin to think about future iterations and how they might contain applications in health and/or wellness.

ContributorsHaagen, Jordan (Author) / Turaga, Pavan (Thesis director) / Drummond Otten, Caitlin (Committee member) / Barrett, The Honors College (Contributor) / Arts, Media and Engineering Sch T (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2022-05
165197-Thumbnail Image.png
ContributorsHaagen, Jordan (Author) / Turaga, Pavan (Thesis director) / Drummond Otten, Caitlin (Committee member) / Barrett, The Honors College (Contributor) / Arts, Media and Engineering Sch T (Contributor)
Created2022-05
165198-Thumbnail Image.jpg
ContributorsHaagen, Jordan (Author) / Turaga, Pavan (Thesis director) / Drummond Otten, Caitlin (Committee member) / Barrett, The Honors College (Contributor) / Arts, Media and Engineering Sch T (Contributor)
Created2022-05