This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 8 of 8
Filtering by

Clear all filters

156151-Thumbnail Image.png
Description
Alloying in semiconductors has enabled many civilian technologies in optoelectronic, photonic fields and more. While the phenomenon of alloying is well established in traditional bulk semiconductors, owing to vastly available ternary phase diagrams, the ability to alloy in 2D systems are less clear. Recently anisotropic materials such as ReS2 and

Alloying in semiconductors has enabled many civilian technologies in optoelectronic, photonic fields and more. While the phenomenon of alloying is well established in traditional bulk semiconductors, owing to vastly available ternary phase diagrams, the ability to alloy in 2D systems are less clear. Recently anisotropic materials such as ReS2 and TiS3 have been extensively studied due to their direct-gap semiconductor and high mobility behaviors. This work is a report on alloys of ReS2 & ReSe2 and TiS3 &TiSe3.

Alloying selenium into ReS2 in the creation of ReS2xSe2-x, tunes the band gap and changes its vibrational spectrum. Depositing this alloy using bottom up approach has resulted in the loss of crystallinity. This loss of crystallinity was evidenced by grain boundaries and point defect shown by TEM images.

Also, in the creation of TiS3xSe3-x, by alloying Se into TiS3, a fixed ratio of 8% selenium deposit into TiS3 host matrix is observed. This is despite the vastly differing precursor amounts and growth temperatures, as evinced by detailed TEM, EDAX, TEM diffraction, and Raman spectroscopy measurements. This unusual behavior contrasts with other well-known layered material systems such as MoSSe, WMoS2 where continuous alloying can be attained. Cluster expansion theory calculations suggest that only limited composition (x) can be achieved. Considering the fact that TiSe3 vdW crystals have not been synthesized in the past, these alloying rejections can be attributed to energetic instability in the ternary phase diagrams estimated by calculations performed. Overall findings highlight potential means and challenges in achieving stable alloying in promising direct gap and high carrier mobility TiS3 materials.
ContributorsAgarwal, Ashutosh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
156760-Thumbnail Image.png
Description
Recently, two-dimensional (2D) materials have emerged as a new class of materials with highly attractive electronic, optical, magnetic, and thermal properties. However, there exists a sub-category of 2D layers wherein constituent metal atoms are arranged in a way that they form weakly coupled chains confined in the 2D landscape. These

Recently, two-dimensional (2D) materials have emerged as a new class of materials with highly attractive electronic, optical, magnetic, and thermal properties. However, there exists a sub-category of 2D layers wherein constituent metal atoms are arranged in a way that they form weakly coupled chains confined in the 2D landscape. These weakly coupled chains extend along particular lattice directions and host highly attractive properties including high thermal conduction pathways, high-mobility carriers, and polarized excitons. In a sense, these materials offer a bridge between traditional one-dimensional (1D) materials (nanowires and nanotubes) and 2D layered systems. Therefore, they are often referred as pseudo-1D materials, and are anticipated to impact photonics and optoelectronics fields.

This dissertation focuses on the novel growth routes and fundamental investigation of the physical properties of pseudo-1D materials. Example systems are based on transition metal chalcogenide such as rhenium disulfide (ReS2), titanium trisulfide (TiS3), tantalum trisulfide (TaS3), and titanium-niobium trisulfide (Nb(1-x)TixS3) ternary alloys. Advanced growth, spectroscopy, and microscopy techniques with density functional theory (DFT) calculations have offered the opportunity to understand the properties of these materials both experimentally and theoretically. The first controllable growth of ReS2 flakes with well-defined domain architectures has been established by a state-of-art chemical vapor deposition (CVD) method. High-resolution electron microscopy has offered the very first investigation into the structural pseudo-1D nature of these materials at an atomic level such as the chain-like features, grain boundaries, and local defects.

Pressure-dependent Raman spectroscopy and DFT calculations have investigated the origin of the Raman vibrational modes in TiS3 and TaS3, and discovered the unusual pressure response and its effect on Raman anisotropy. Interestingly, the structural and vibrational anisotropy can be retained in the Nb(1-x)TixS3 alloy system with the presence of phase transition at a nominal Ti alloying limit. Results have offered valuable experimental and theoretical insights into the growth routes as well as the structural, optical, and vibrational properties of typical pseudo-1D layered systems. The overall findings hope to shield lights to the understanding of this entire class of materials and benefit the design of 2D electronics and optoelectronics.
ContributorsWu, Kedi (Author) / Tongay, Sefaattin (Thesis advisor) / Zhuang, Houlong (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2018
156666-Thumbnail Image.png
Description
Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium

Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium chalcogenides, belonging to the group III-VI compounds, are a new class of 2D semiconductors that carry a variety of interesting properties including wide spectrum coverage of their bandgaps and thus are promising candidates for next generation electronic and optoelectronic devices. Pushing these materials toward applications requires more controllable synthesis methods and facile routes for engineering their properties on demand.

In this dissertation, vapor phase transport is used to synthesize layer structured gallium chalcogenide nanomaterials with highly controlled structure, morphology and properties, with particular emphasis on GaSe, GaTe and GaSeTe alloys. Multiple routes are used to manipulate the physical properties of these materials including strain engineering, defect engineering and phase engineering. First, 2D GaSe with controlled morphologies is synthesized on Si(111) substrates and the bandgap is significantly reduced from 2 eV to 1.7 eV due to lateral tensile strain. By applying vertical compressive strain using a diamond anvil cell, the band gap can be further reduced to 1.4 eV. Next, pseudo-1D GaTe nanomaterials with a monoclinic structure are synthesized on various substrates. The product exhibits highly anisotropic atomic structure and properties characterized by high-resolution transmission electron microscopy and angle resolved Raman and photoluminescence (PL) spectroscopy. Multiple sharp PL emissions below the bandgap are found due to defects localized at the edges and grain boundaries. Finally, layer structured GaSe1-xTex alloys across the full composition range are synthesized on GaAs(111) substrates. Results show that GaAs(111) substrate plays an essential role in stabilizing the metastable single-phase alloys within the miscibility gaps. A hexagonal to monoclinic phase crossover is observed as the Te content increases. The phase crossover features coexistence of both phases and isotropic to anisotropic structural transition.

Overall, this work provides insights into the controlled synthesis of gallium chalcogenides and opens up new opportunities towards optoelectronic applications that require tunable material properties.
ContributorsCai, Hui, Ph.D (Author) / Tongay, Sefaattin (Thesis advisor) / Dwyer, Christian (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
157671-Thumbnail Image.png
Description
More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when

More recently there have been a tremendous advancement in theoretical studies showing remarkable properties that could be exploited from transition metal dichalcogenide (TMDC) Janus crystals through various applications. These Janus crystals are having a proven intrinsic electrical field due to breaking of out-of-plane inversion symmetry in a conventional TMDC when one of the chalcogenides atomic layer is being completely replaced by a layer of different chalcogen element. However, due to lack of accurate processing control at nanometer scales, key for creating a highly crystalline Janus structure has not yet been familiarized. Thus, experimental characterization and implication of these Janus crystals are still in a state of stagnation. This work presents a new advanced methodology that could prove to be highly efficient and effective for selective replacement of top layer atomic sites at room temperature conditions.

This is specifically more focused on proving an easy repeatability for replacement of top atomic layer chalcogenide from a parent structure of already grown TMDC monolayer (via CVD) by a post plasma processing technique. Though this developed technique is not limited to only chalcogen atom replacement but can be extended to any type of surface functionalization requirements.

Basic characterization has been performed on the Janus crystal of SeMoS and SeWS where, creation and characterization of SeWS has been done for the very first time, evidencing a repeatable nature of the developed methodology.
ContributorsTrivedi, Dipesh (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2019
158390-Thumbnail Image.png
Description
Metal-organic frameworks have made a feature in the cutting-edge technology with a wide variety of applications because they are the new material candidate as adsorbent or membrane with high surface area, various pore sizes, and highly tunable framework functionality properties. The emergence of two-dimensional (2D) metal-organic frameworks has surged an

Metal-organic frameworks have made a feature in the cutting-edge technology with a wide variety of applications because they are the new material candidate as adsorbent or membrane with high surface area, various pore sizes, and highly tunable framework functionality properties. The emergence of two-dimensional (2D) metal-organic frameworks has surged an outburst of intense research to understand the feasible synthesis and exciting material properties of these class of materials. Despite their potential, studies to date show that it is extremely challenging to synthesize and manufacture 2D MOF at large scales with ultimate control over crystallinity and thickness.

The field of research to date has produced various synthesis routes which can further be used to design 2D materials with a range of organic ligands and metal linkers. This thesis seeks to extend these design rules to demonstrate the competitive growth of two- dimensional (2D) metal-organic frameworks(MOF) and their alloys to predict which ligands and metals can be combined, study the intercalation of Bromine in these frameworks and their alloys which leads to the discovery of reduced band gap in the layered MOF alloy.

In this study it has been shown that the key factor in achieving layered 2D MOFs and it relies on the use of carefully engineered ligands to terminate the out-of-plane sites on metal clusters thereby eliminating strong interlayer hydrogen bond formation.

The major contribution of pyridine is to replace interlayer hydrogen bonding or other weak chemical bonds. Overall results establish an entirely new synthesis method for producing highly crystalline and scalable 2D MOFs and their alloys. Bromine intercalation merits future studies on band gap engineering in these layered materials.
ContributorsVijay, Shiljashree (Author) / Tongay, Sefaattin (Thesis advisor) / Green, Matthew D (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2020
161698-Thumbnail Image.png
Description
2D materials with reduced symmetry have gained great interest in the past decade due to the arising quantum properties introduced by the structural asymmetry. A particular example is called 2D Janus materials. Named after Roman god Janus with two faces, Janus materials have different chemical compositions on the two sides

2D materials with reduced symmetry have gained great interest in the past decade due to the arising quantum properties introduced by the structural asymmetry. A particular example is called 2D Janus materials. Named after Roman god Janus with two faces, Janus materials have different chemical compositions on the two sides of materials, leading to a structure with broken mirror symmetry. Electronegativity difference of the facial elements induces a built-in polarization field pointing out of the plane, which has driven a lot of theory predictions on Rashba splitting, high- temperature ferromagnetism, Skyrmion formation, and so on. Previously reported experimental synthesis of Janus 2D materials relies on high-temperature processing, which limits the crystallinity of as produced 2D layers. In this dissertation, I present a room temperature selective epitaxial atomic re- placement (SEAR) method to convert CVD-grown transition metal dichalcogenides (TMDs) into a Janus structure. Chemically reactive H2 plasma is used to selectively etch off the top layer of chalcogen atoms and the introduction of replacement chalco- gen source in-situ allows for the achievement of Janus structures in one step at room temperature. It is confirmed that the produced Janus monolayers possess high crys- tallinity and good excitonic properties. Moving forward, I show the fabrication of lateral and vertical heterostructures of Janus materials, which are predicted to show exotic properties because of the intrinsic polarization field. To efficiently screen other kinds of interesting Janus structures, a new plasma chamber is designed to allow in-situ optical measurement on the target monolayer during the SEAR process. Successful conversion is seen on mechanically exfoliated MoSe2 and WSe2, and insights into reaction kinetics are gain from Raman spectra evolution. Using the monitoring ability, Janus SNbSe is synthesized for the first time. It’s also demonstrated that the overall crystallinity of as produced Janus monolayer SWSe and SMoSe are correlated with the source of monolayer TMDs. Overall, the synthesis of the Janus monolayers using the described method paves the way to the production of highly crystalline Janus materials, and with the in-situ monitoring ability, a deeper understanding of the mechanism is reached. This will accelerate future exploration of other Janus materials synthesis, and confirmation and discovery of their exciting quantum properties.
ContributorsQin, Ying (Author) / Tongay, Sefaattin (Thesis advisor) / Zhuang, Houlong (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2021
132272-Thumbnail Image.png
Description
The development of stab-resistant Kevlar armor has been an ongoing field of research
since the late 1990s, with the ultimate goal of improving the multi-threat capabilities of
traditional soft-body armor while significantly improving its protective efficiency - the amount
of layers of armor material required to defeat threats. To create a novel, superior

The development of stab-resistant Kevlar armor has been an ongoing field of research
since the late 1990s, with the ultimate goal of improving the multi-threat capabilities of
traditional soft-body armor while significantly improving its protective efficiency - the amount
of layers of armor material required to defeat threats. To create a novel, superior materials
system to reinforce Kevlar armor for the Norica Capstone project, this thesis set out to
synthesize, recover, and characterize zinc oxide nanowire colloids.

The materials synthesized were successfully utilized in the wider Capstone effort to
dramatically enhance the protective abilities of Kevlar, while the data obtained on the 14
hydrothermal synthesis attempts and numerous challenges at recovery provided critical
information on the synthesis parameters involved in the reliable, scalable mass production of the
nanomaterial additive. Additionally, recovery was unconventionally facilitated in the absence of
a vacuum filtration apparatus with nanoscale filters by intentionally inducing electrostatic
agglomeration of the nanowires during standard gravity filtration. The subsequent application of
these nanowires constituted a pioneering use in the production of nanowire-reinforced
STF-based Kevlar coatings, and support the future development and, ultimately, the
commercialization of lighter and more-protective soft armor systems.
ContributorsDurso, Michael Nathan (Author) / Tongay, Sefaattin (Thesis director) / Zhuang, Houlong (Committee member) / Materials Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
193573-Thumbnail Image.png
Description
Janus Transition Metal Dichalcogenides (TMDs) are emerging 2D quantum materials with an asymmetric chalcogen configuration that induces an out-of-plane dipole moment. Their synthesis has been a limiting factor in exploring these systems' many-body physics and interactions. This dissertation examines the challenges associated with synthesis and charts the excitonic landscape of

Janus Transition Metal Dichalcogenides (TMDs) are emerging 2D quantum materials with an asymmetric chalcogen configuration that induces an out-of-plane dipole moment. Their synthesis has been a limiting factor in exploring these systems' many-body physics and interactions. This dissertation examines the challenges associated with synthesis and charts the excitonic landscape of Janus crystals by proposing the development of the Selective Epitaxy and Atomic Replacement (SEAR) technique. SEAR utilizes ionized radical precursors to modify TMD monolayers into their Janus counterparts selectively. The synthesis is coupled with optical spectroscopy and monitored in real-time, enabling precise control of reaction kinetics and the structural evolution of Janus TMDs. The results demonstrate the synthesis of Janus TMDs at ambient temperatures, reducing defects and preserving the structural integrity with the hitherto best-reported exciton linewidth emission value, indicating ultra-high optical quality. Cryogenic optical spectroscopy (4K) coupled with a magnetic field on Janus monolayers has allowed the isolation of excitonic transitions and the identification of charged exciton complexes. Further study into macroscopic and microscopic defects reveals that structural asymmetry results in the spontaneous formation of 2D Janus Nanoscrolls from an in-plane strain. The chalcogen arrangement in these structures dictates two types of scrolling dynamics that form Archimedean or inverted C-scrolls. High-resolution scanning transmission electron microscopy of these superlattices shows a preferential orientation of scrolling and formation of Moiré patterns. These materials' thermodynamically favorable defect states are identified and shown to be optically active. The encapsulation of Janus TMDs with hexagonal Boron Nitride (h-BN) has allowed isolation defect transitions. DFT coupled with power-dependent PL spectroscopy at 4K shows the broad defect band to be a convolution of individual defect states with extremely narrow linewidth (2 meV) indicative of a two-state quantum system. The research presents a comprehensive synthesis approach with insights into the structural and morphological stability of 2D Janus layers, establishing a complete structure-property correlation of optical transitions and defect states, broadening the scope for practical applications in quantum information technologies.
ContributorsSayyad, Mohammed Yasir (Author) / Tongay, Sefaattin (Thesis advisor) / Esqueda, Ivan S (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2024