This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171530-Thumbnail Image.png
Description
Autonomous systems inevitably must interact with other surrounding systems; thus, algorithms for intention/behavior estimation are of great interest. This thesis dissertation focuses on developing passive and active model discrimination algorithms (PMD and AMD) with applications to set-valued intention identification and fault detection for uncertain/bounded-error dynamical systems. PMD uses the obtained

Autonomous systems inevitably must interact with other surrounding systems; thus, algorithms for intention/behavior estimation are of great interest. This thesis dissertation focuses on developing passive and active model discrimination algorithms (PMD and AMD) with applications to set-valued intention identification and fault detection for uncertain/bounded-error dynamical systems. PMD uses the obtained input-output data to invalidate the models, while AMD designs an auxiliary input to assist the discrimination process. First, PMD algorithms are proposed for noisy switched nonlinear systems constrained by metric/signal temporal logic specifications, including systems with lossy data modeled by (m,k)-firm constraints. Specifically, optimization-based algorithms are introduced for analyzing the detectability/distinguishability of models and for ruling out models that are inconsistent with observations at run time. On the other hand, two AMD approaches are designed for noisy switched nonlinear models and piecewise affine inclusion models, which involve bilevel optimization with integer variables/constraints in the inner/lower level. The first approach solves the inner problem using mixed-integer parametric optimization, whose solution is included when solving the outer problem/higher level, while the second approach moves the integer variables/constraints to the outer problem in a manner that retains feasibility and recasts the problem as a tractable mixed-integer linear programming (MILP). Furthermore, AMD algorithms are proposed for noisy discrete-time affine time-invariant systems constrained by disjunctive and coupled safety constraints. To overcome the issues associated with generalized semi-infinite constraints due to state-dependent input constraints and disjunctive safety constraints, several constraint reformulations are proposed to recast the AMD problems as tractable MILPs. Finally, partition-based AMD approaches are proposed for noisy discrete-time affine time-invariant models with model-independent parameters and output measurement that are revealed at run time. Specifically, algorithms with fixed and adaptive partitions are proposed, where the latter improves on the performance of the former by allowing the partitions to be optimized. By partitioning the operation region, the problem is solved offline, and partition trees are constructed which can be used as a `look-up table' to determine the optimal input depending on revealed information at run time.
ContributorsNiu, Ruochen (Author) / Yong, Sze Zheng S.Z. (Thesis advisor) / Berman, Spring (Committee member) / Ren, Yi (Committee member) / Zhang, Wenlong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2022
161371-Thumbnail Image.png
Description
A skin lesion is a part of the skin which has an uncommon growth or appearance in comparison with the skin around it. While most are harmless, some can be warnings of skin cancer. Melanoma is the deadliest form of skin cancer and its early detection in dermoscopic images is

A skin lesion is a part of the skin which has an uncommon growth or appearance in comparison with the skin around it. While most are harmless, some can be warnings of skin cancer. Melanoma is the deadliest form of skin cancer and its early detection in dermoscopic images is crucial and results in increase in the survival rate. The clinical ABCD (asymmetry, border irregularity, color variation and diameter greater than 6mm) rule is one of the most widely used method for early melanoma recognition. However, accurate classification of melanoma is still extremely difficult due to following reasons(not limited to): great visual resemblance between melanoma and non-melanoma skin lesions, less contrast difference between skin and the lesions etc. There is an ever-growing need of correct and reliable detection of skin cancers. Advances in the field of deep learning deems it perfect for the task of automatic detection and is very useful to pathologists as they aid them in terms of efficiency and accuracy. In this thesis various state of the art deep learning frameworks are used. An analysis of their parameters is done, innovative techniques are implemented to address the challenges faced in the tasks, segmentation, and classification in skin lesions.• Segmentation is task of dividing out regions of interest. This is used to only keep the ROI and separate it from its background. • Classification is the task of assigning the image a class, i.e., Melanoma(Cancer) and Nevus(Not Cancer). A pre-trained model is used and fine-tuned as per the needs of the given problem statement/dataset. Experimental results show promise as the implemented techniques reduce the false negatives rate, i.e., neural network is less likely to misclassify a melanoma.
ContributorsVerma, Vivek (Author) / Motsch, Sebastien (Thesis advisor) / Berman, Spring (Thesis advisor) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2021