This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

152978-Thumbnail Image.png
Description
Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which

Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization.

To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities.

The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior.

The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of ChG-based resistive switching memory.
ContributorsRajabi, Saba (Author) / Barnaby, Hugh (Thesis advisor) / Kozicki, Michael (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2014
151218-Thumbnail Image.png
Description
High-Resistivity Silicon (HRS) substrates are important for low-loss, high-performance microwave and millimeter wave devices in high-frequency telecommunication systems. The highest resistivity of up to ~10,000 ohm.cm is Float Zone (FZ) grown Si which is produced in small quantities and moderate wafer diameter. The more common Czochralski (CZ) Si can achieve

High-Resistivity Silicon (HRS) substrates are important for low-loss, high-performance microwave and millimeter wave devices in high-frequency telecommunication systems. The highest resistivity of up to ~10,000 ohm.cm is Float Zone (FZ) grown Si which is produced in small quantities and moderate wafer diameter. The more common Czochralski (CZ) Si can achieve resistivities of around 1000 ohm.cm, but the wafers contain oxygen that can lead to thermal donor formation with donor concentration significantly higher (~1015 cm-3) than the dopant concentration (~1012-1013 cm-3) of such high-resistivity Si leading to resistivity changes and possible type conversion of high-resistivity p-type silicon. In this research capacitance-voltage (C-V) characterization is employed to study the donor formation and type conversion of p-type High-resistivity Silicon-On-Insulator (HRSOI) wafers and the challenges involved in C-V characterization of HRSOI wafers using a Schottky contact are highlighted. The maximum capacitance of bulk or Silicon-On-Insulator (SOI) wafers is governed by the gate/contact area. During C-V characterization of high-resistivity SOI wafers with aluminum contacts directly on the Si film (Schottky contact); it was observed that the maximum capacitance is much higher than that due to the contact area, suggesting bias spreading due to the distributed transmission line of the film resistance and the buried oxide capacitance. In addition, an "S"-shape C-V plot was observed in the accumulation region. The effects of various factors, such as: frequency, contact and substrate sizes, gate oxide, SOI film thickness, film and substrate doping, carrier lifetime, contact work-function, temperature, light, annealing temperature and radiation on the C-V characteristics of HRSOI wafers are studied. HRSOI wafers have the best crosstalk prevention capability compared to other types of wafers, which plays a major role in system-on-chip configuration to prevent coupling between high frequency digital and sensitive analog circuits. Substrate crosstalk in HRSOI and various factors affecting the crosstalk, such as: substrate resistivity, separation between devices, buried oxide (BOX) thickness, radiation, temperature, annealing, light, and device types are discussed. Also various ways to minimize substrate crosstalk are studied and a new characterization method is proposed. Owing to their very low doping concentrations and the presence of oxygen in CZ wafers, HRS wafers pose a challenge in resistivity measurement using conventional techniques such as four-point probe and Hall measurement methods. In this research the challenges in accurate resistivity measurement using four-point probe, Hall method, and C-V profile are highlighted and a novel approach to extract resistivity of HRS wafers based on Impedance Spectroscopy measurements using polymer dielectrics such as Polystyrene and Poly Methyl Methacrylate (PMMA) is proposed.
ContributorsNayak, Pinakpani (Author) / Schroder, Dieter K. (Thesis advisor) / Vasileska, Dragica (Committee member) / Kozicki, Michael (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2012
156134-Thumbnail Image.png
Description
In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited

In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited availability of silver. A conventional aluminum electroplating method was employed for silicon solar cells fabrication on both p-type and n-type substrates. The highest efficiency of 17.9% was achieved in the n-type solar cell with a rear junction, which is comparable to that of the same structure cell with screen printed silver electrodes from industrial production lines. It also showed better spiking resistant performance than the common structure p-type solar cell. Further efforts were put on the development of a novel light-induced plating of aluminum technique. The aluminum was deposited directly on a silicon substrate without the assistance of a conductive seed layer, thus simplified and reduced the process cost. The plated aluminum has good adhesion to the silicon surface with the resistivity as low as 4×10–6 -cm. A new demo tool was designed and set up for the light-induced plating experiment, aiming to utilize this technique in large-size solar cells fabrication and mass production. Besides the metallization methods, a comprehensive sensitivity analysis for the efficiency dispersion in the production of crystalline-Si solar cells was presented based on numerical simulations. Temperature variation in the diffusion furnace was the most significant cause of the efficiency dispersion. It was concluded that a narrow efficiency range of ±0.5% absolute is achievable if the emitter diffusion temperature is confined to a 13˚C window, while other cell parameters vary within their normal windows. Possible methods to minimize temperature variation in emitter diffusion were proposed.
ContributorsWang, Laidong (Author) / Tao, Meng (Thesis advisor) / Vasileska, Dragica (Committee member) / Kozicki, Michael (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2018