This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

153667-Thumbnail Image.png
Description
The prevalence of renewable generation will increase in the next several decades and offset conventional generation more and more. Yet this increase is not coming without challenges. Solar, wind, and even some water resources are intermittent and unpredictable, and thereby create scheduling challenges due to their inherent “uncontrolled” nature. To

The prevalence of renewable generation will increase in the next several decades and offset conventional generation more and more. Yet this increase is not coming without challenges. Solar, wind, and even some water resources are intermittent and unpredictable, and thereby create scheduling challenges due to their inherent “uncontrolled” nature. To effectively manage these distributed renewable assets, new control algorithms must be developed for applications including energy management, bridge power, and system stability. This can be completed through a centralized control center though efforts are being made to parallel the control architecture with the organization of the renewable assets themselves—namely, distributed controls. Building energy management systems are being employed to control localized energy generation, storage, and use to reduce disruption on the net utility load. One such example is VOLTTRONTM, an agent-based platform for building energy control in real time. In this thesis, algorithms developed in VOLTTRON simulate a home energy management system that consists of a solar PV array, a lithium-ion battery bank, and the grid. Dispatch strategies are implemented to reduce energy charges from overall consumption ($/kWh) and demand charges ($/kW). Dispatch strategies for implementing storage devices are tuned on a month-to-month basis to provide a meaningful economic advantage under simulated scenarios to explore algorithm sensitivity to changing external factors. VOLTTRON agents provide automated real-time optimization of dispatch strategies to efficiently manage energy supply and demand, lower consumer costs associated with energy usage, and reduce load on the utility grid.
ContributorsCardwell, Joseph (Author) / Johnson, Nathan (Thesis advisor) / Rogers, Bradley (Committee member) / Macia, Narciso (Committee member) / Arizona State University (Publisher)
Created2015
154736-Thumbnail Image.png
Description
Measuring and estimating solar resource availability is critical for assessing new sites for solar energy generation. This includes beam radiation, diffuse radiation, and total incident radiation. Total incident radiation is pertinent to solar photovoltaic (PV) output and low-temperature solar thermal applications whereas beam radiation is used for concentrating solar power

Measuring and estimating solar resource availability is critical for assessing new sites for solar energy generation. This includes beam radiation, diffuse radiation, and total incident radiation. Total incident radiation is pertinent to solar photovoltaic (PV) output and low-temperature solar thermal applications whereas beam radiation is used for concentrating solar power (CSP). Global horizontal insolation (GHI) data are most commonly available of any solar radiation measurement, yet these data cannot be directly applied to solar power generator estimation because solar PV panels and solar CSP collectors are not parallel to the earth’s surface. In absence of additional measured data, GHI data may be broken down into its constituent parts—diffuse radiation and beam radiation—using statistical techniques that incorporate explanatory variables such as the clearness index. This study provides a suite of methods and regression models to estimate diffuse radiation as a function of various explanatory variables using both piecewise and continuous fits. Regression analyses using the clearness index are completed for seven locations in the United States and four locations in other regions of the world. The multi-site analysis indicates that models developed using training data for a single location perform best in that location, yet general models can be created that perform reasonably well across any locality and then applied to estimate solar resource availability in new locations around the world. Results from the global and site-specific models perform better than the existing models in literature and indicate that models perform different in different sky conditions e.g. clear or cloudy sky. Results also show that continuous models perform equivalent or better than the piecewise models. Newly generated piecewise models showed improvement over some intervals in the clearness index. A combination of fits from this study and existing literature was used to improve overall performance of modeling techniques used in diffuse radiation estimation. Germany was selected for more detailed studies of a single case study using the clearness index, ambient temperature, relative humidity, and absolute humidity as explanatory variables. Clearness index is the most important variable for diffuse radiation calculation whereas the relative humidity and the temperature are the secondary variable for improving calculation. Absolute humidity plays similar role as temperature in improving the calculation on the other hand relative humidity improves it very slightly over the absolute humidity and temperature.
ContributorsSingh, Uday P (Author) / Johnson, Nathan (Thesis advisor) / Rogers, Bradley (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2016