This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

152006-Thumbnail Image.png
Description
When people look for things in their environment they use a target template - a mental representation of the object they are attempting to locate - to guide their attention around a scene and to assess incoming visual input to determine if they have found that for which they are

When people look for things in their environment they use a target template - a mental representation of the object they are attempting to locate - to guide their attention around a scene and to assess incoming visual input to determine if they have found that for which they are searching. However, unlike laboratory experiments, searchers in the real-world rarely have perfect knowledge regarding the appearance of their target. In five experiments (with nearly 1,000 participants), we examined how the precision of the observer's template affects their ability to conduct visual search. Specifically, we simulated template imprecision in two ways: First, by contaminating our searchers' templates with inaccurate features, and second, by introducing extraneous features to the template that were unhelpful. In those experiments we recorded the eye movements of our searchers in order to make inferences regarding the extent to which attentional guidance and decision-making are hindered by template imprecision. We also examined a third way in which templates may become imprecise; namely, that they may deteriorate over time. Overall, our findings support a dual-function theory of the target template, and highlight the importance of examining template precision in future research.
ContributorsHout, Michael C (Author) / Goldinger, Stephen D (Thesis advisor) / Azuma, Tamiko (Committee member) / Homa, Donald (Committee member) / Reichle, Erik (Committee member) / Arizona State University (Publisher)
Created2013
134052-Thumbnail Image.png
Description
It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of

It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of experiments, Carvalho & Goldstone (2013), demonstrated that a blocked presentation showed an advantage during learning, but that ultimately, the distributed presentation yielded better performance during a post-learning transfer test. However, we have identified a major methodological issue in this study that we believe contaminates the results in a way that leads to an inflation and misrepresentation of learning levels. The present study aimed to correct this issue and re-examine whether a blocked or distributed presentation enhances the learning and subsequent generalization of categories. We also introduced two shaping variables, category size and distortion level at transfer, in addition to the mode of presentation (blocked versus distributed). Results showed no significant differences of mode of presentation at either the learning or transfer phases, thus supporting our concern about the previous study. Additional findings showed benefits in learning categories with a greater category size, as well as higher classification accuracy of novel stimuli at lower-distortion levels.
ContributorsJacoby, Victoria Leigh (Author) / Homa, Donald (Thesis director) / Brewer, Gene (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12