This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

187685-Thumbnail Image.png
Description
Computed tomography (CT) and synthetic aperture sonar (SAS) are tomographic imaging techniques that are fundamental for applications within medical and remote sensing. Despite their successes, a number of factors constrain their image quality. For example, a time-varying scene during measurement acquisition yields image artifacts. Additionally, factors such as bandlimited or

Computed tomography (CT) and synthetic aperture sonar (SAS) are tomographic imaging techniques that are fundamental for applications within medical and remote sensing. Despite their successes, a number of factors constrain their image quality. For example, a time-varying scene during measurement acquisition yields image artifacts. Additionally, factors such as bandlimited or sparse measurements limit image resolution. This thesis presents novel algorithms and techniques to account for these factors during image formation and outperform traditional reconstruction methods. In particular, this thesis formulates analysis-by-synthesis optimizations that leverage neural fields to predict the scene and differentiable physics models that incorporate prior knowledge about image formation. The specific contributions include: (1) a method for reconstructing CT measurements from time-varying (non-stationary) scenes; (2) a method for deconvolving SAS images, which benefits image quality; (3) a method that couples neural fields and a differentiable acoustic model for 3D SAS reconstructions.
ContributorsReed, Albert William (Author) / Jayasuriya, Suren (Thesis advisor) / Brown, Daniel C (Committee member) / Dasarathy, Gautam (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2023
157645-Thumbnail Image.png
Description
Disentangling latent spaces is an important research direction in the interpretability of unsupervised machine learning. Several recent works using deep learning are very effective at producing disentangled representations. However, in the unsupervised setting, there is no way to pre-specify which part of the latent space captures specific factors of

Disentangling latent spaces is an important research direction in the interpretability of unsupervised machine learning. Several recent works using deep learning are very effective at producing disentangled representations. However, in the unsupervised setting, there is no way to pre-specify which part of the latent space captures specific factors of variations. While this is generally a hard problem because of the non-existence of analytical expressions to capture these variations, there are certain factors like geometric

transforms that can be expressed analytically. Furthermore, in existing frameworks, the disentangled values are also not interpretable. The focus of this work is to disentangle these geometric factors of variations (which turn out to be nuisance factors for many applications) from the semantic content of the signal in an interpretable manner which in turn makes the features more discriminative. Experiments are designed to show the modularity of the approach with other disentangling strategies as well as on multiple one-dimensional (1D) and two-dimensional (2D) datasets, clearly indicating the efficacy of the proposed approach.
ContributorsKoneripalli Seetharam, Kaushik (Author) / Turaga, Pavan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2019