This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150497-Thumbnail Image.png
Description
In recent years, service oriented computing (SOC) has become a widely accepted paradigm for the development of distributed applications such as web services, grid computing and cloud computing systems. In service-based systems (SBS), multiple service requests with specific performance requirements make services compete for system resources. IT service providers need

In recent years, service oriented computing (SOC) has become a widely accepted paradigm for the development of distributed applications such as web services, grid computing and cloud computing systems. In service-based systems (SBS), multiple service requests with specific performance requirements make services compete for system resources. IT service providers need to allocate resources to services so the performance requirements of customers can be satisfied. Workload and performance models are required for efficient resource management and service performance assurance in SBS. This dissertation develops two methods to understand and model the cause-effect relations of service-related activities with resources workload and service performance. Part one presents an empirical method that requires the collection of system dynamics data and the application of statistical analyses. The results show that the method is capable to: 1) uncover the impacts of services on resource workload and service performance, 2) identify interaction effects of multiple services running concurrently, 3) gain insights about resource and performance tradeoffs of services, and 4) build service workload and performance models. In part two, the empirical method is used to investigate the impacts of services, security mechanisms and cyber attacks on resources workload and service performance. The information obtained is used to: 1) uncover interaction effects of services, security mechanisms and cyber attacks, 2) identify tradeoffs within limits of system resources, and 3) develop general/specific strategies for system survivability. Finally, part three presents a framework based on the usage profiles of services competing for resources and the resource-sharing schemes. The framework is used to: 1) uncover the impacts of service parameters (e.g. arrival distribution, execution time distribution, priority, workload intensity, scheduling algorithm) on workload and performance, and 2) build service workload and performance models at individual resources. The estimates obtained from service workload and performance models at individual resources can be aggregated to obtain overall estimates of services through multiple system resources. The workload and performance models of services obtained through both methods can be used for the efficient resource management and service performance assurance in SBS.
ContributorsMartinez Aranda, Billibaldo (Author) / Ye, Nong (Thesis advisor) / Wu, Tong (Committee member) / Sarjoughian, Hessam S. (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012
155138-Thumbnail Image.png
Description
Resource allocation in cloud computing determines the allocation of computer and network resources of service providers to service requests of cloud users for meeting the cloud users' service requirements. The efficient and effective resource allocation determines the success of cloud computing. However, it is challenging to satisfy objectives of all

Resource allocation in cloud computing determines the allocation of computer and network resources of service providers to service requests of cloud users for meeting the cloud users' service requirements. The efficient and effective resource allocation determines the success of cloud computing. However, it is challenging to satisfy objectives of all service providers and all cloud users in an unpredictable environment with dynamic workload, large shared resources and complex policies to manage them.

Many studies propose to use centralized algorithms for achieving optimal solutions for resource allocation. However, the centralized algorithms may encounter the scalability problem to handle a large number of service requests in a realistically satisfactory time. Hence, this dissertation presents two studies. One study develops and tests heuristics of centralized resource allocation to produce near-optimal solutions in a scalable manner. Another study looks into decentralized methods of performing resource allocation.

The first part of this dissertation defines the resource allocation problem as a centralized optimization problem in Mixed Integer Programming (MIP) and obtains the optimal solutions for various resource-service problem scenarios. Based on the analysis of the optimal solutions, various heuristics are designed for efficient resource allocation. Extended experiments are conducted with larger numbers of user requests and service providers for performance evaluation of the resource allocation heuristics. Experimental results of the resource allocation heuristics show the comparable performance of the heuristics to the optimal solutions from solving the optimization problem. Moreover, the resource allocation heuristics demonstrate better computational efficiency and thus scalability than solving the optimization problem.

The second part of this dissertation looks into elements of service provider-user coordination first in the formulation of the centralized resource allocation problem in MIP and then in the formulation of the optimization problem in a decentralized manner for various problem cases. By examining differences between the centralized, optimal solutions and the decentralized solutions for those problem cases, the analysis of how the decentralized service provider-user coordination breaks down the optimal solutions is performed. Based on the analysis, strategies of decentralized service provider-user coordination are developed.
ContributorsYang, Su Seon (Author) / Ye, Nong (Thesis advisor) / Wu, Teresa (Committee member) / Pan, Rong (Committee member) / Yau, Sik-Sang (Committee member) / Arizona State University (Publisher)
Created2016