This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156215-Thumbnail Image.png
Description
Project portfolio selection (PPS) is a significant problem faced by most organizations. How to best select the many innovative ideas that a company has developed to deploy in a proper and sustained manner with a balanced allocation of its resources over multiple time periods is one of vital importance to

Project portfolio selection (PPS) is a significant problem faced by most organizations. How to best select the many innovative ideas that a company has developed to deploy in a proper and sustained manner with a balanced allocation of its resources over multiple time periods is one of vital importance to a company's goals. This dissertation details the steps involved in deploying a more intuitive portfolio selection framework that facilitates bringing analysts and management to a consensus on ongoing company efforts and buy into final decisions. A binary integer programming selection model that constructs an efficient frontier allows the evaluation of portfolios on many different criteria and allows decision makers (DM) to bring their experience and insight to the table when making a decision is discussed. A binary fractional integer program provides additional choices by optimizing portfolios on cost-benefit ratios over multiple time periods is also presented. By combining this framework with an `elimination by aspects' model of decision making, DMs evaluate portfolios on various objectives and ensure the selection of a portfolio most in line with their goals. By presenting a modeling framework to easily model a large number of project inter-dependencies and an evolutionary algorithm that is intelligently guided in the search for attractive portfolios by a beam search heuristic, practitioners are given a ready recipe to solve big problem instances to generate attractive project portfolios for their organizations. Finally, this dissertation attempts to address the problem of risk and uncertainty in project portfolio selection. After exploring the selection of portfolios based on trade-offs between a primary benefit and a primary cost, the third important dimension of uncertainty of outcome and the risk a decision maker is willing to take on in their quest to select the best portfolio for their organization is examined.
ContributorsSampath, Siddhartha (Author) / Gel, Esma (Thesis advisor) / Fowler, Jown W (Thesis advisor) / Kempf, Karl G. (Committee member) / Pan, Rong (Committee member) / Sefair, Jorge (Committee member) / Arizona State University (Publisher)
Created2018
158514-Thumbnail Image.png
Description
In today’s rapidly changing world and competitive business environment, firms are challenged to build their production and distribution systems to provide the desired customer service at the lowest possible cost. Designing an optimal supply chain by optimizing supply chain operations and decisions is key to achieving these goals.

In today’s rapidly changing world and competitive business environment, firms are challenged to build their production and distribution systems to provide the desired customer service at the lowest possible cost. Designing an optimal supply chain by optimizing supply chain operations and decisions is key to achieving these goals.

In this research, a capacity planning and production scheduling mathematical model for a multi-facility and multiple product supply chain network with significant capital and labor costs is first proposed. This model considers the key levers of capacity configuration at production plants namely, shifts, run rate, down periods, finished goods inventory management and overtime. It suggests a minimum cost plan for meeting medium range demand forecasts that indicates production and inventory levels at plants by time period, the associated manpower plan and outbound shipments over the planning horizon. This dissertation then investigates two model extensions: production flexibility and pricing. In the first extension, the cost and benefits of investing in production flexibility is studied. In the second extension, product pricing decisions are added to the model for demand shaping taking into account price elasticity of demand.





The research develops methodologies to optimize supply chain operations by determining the optimal capacity plan and optimal flows of products among facilities based on a nonlinear mixed integer programming formulation. For large size real life cases the problem is intractable. An alternate formulation and an iterative heuristic algorithm are proposed and tested. The performance and bounds for the heuristic are evaluated. A real life case study in the automotive industry is considered for the implementation of the proposed models. The implementation results illustrate that the proposed method provides valuable insights for assisting the decision making process in the supply chain and provides significant improvement over current practice.
ContributorsAlmatooq, Nourah (Author) / Askin, Ronald (Thesis advisor) / Sefair, Jorge (Thesis advisor) / Gel, Esma (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2020