This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

133010-Thumbnail Image.png
Description
SmartAid aims to target a small, yet relevant issue in a cost effective, easily replicable, and innovative manner. This paper outlines how to replicate the design and building process to create an intelligent first aid kit. SmartAid utilizes Alexa Voice Service technologies to provide a new and improved way to

SmartAid aims to target a small, yet relevant issue in a cost effective, easily replicable, and innovative manner. This paper outlines how to replicate the design and building process to create an intelligent first aid kit. SmartAid utilizes Alexa Voice Service technologies to provide a new and improved way to teach users about the different types of first aid kit items and how to treat minor injuries, step by step. Using Alexa and RaspberryPi, SmartAid was designed as an added attachment to first aid kits. Alexa Services were installed into a RaspberryPi to create a custom Amazon device, and from there, using the Alexa Interaction Model and the Lambda function services, SmartAid was developed. After the designing and coding of the application, a user guide was created to provide users with information on what items are included in the first aid kit, what types of injuries can be treated through first aid, and how to use SmartAid. The
application was tested for its usability and practicality by a small sample of students. Users provided suggestions on how to make the application more versatile and functional, and confirmed that the application made first aid easier and was something that they could see themselves using. While this application is not aimed to replace the current physical guide solution completely, the findings of this project show that SmartAid has potential to stand in as an improved, easy to use, and convenient alternative for first aid guidance.
ContributorsHasan, Bushra Anwara (Author) / Kobayashi, Yoshihiro (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Psychology (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132358-Thumbnail Image.png
Description
The goal of this study was to examine whether there is any effect of phonotactic probability during the early phases of novel word recognition. In order to determine this, I performed two experiments. In Experiment 1, 33 adult monolingual English speakers learned 24 novel word-object pairings, half of which were

The goal of this study was to examine whether there is any effect of phonotactic probability during the early phases of novel word recognition. In order to determine this, I performed two experiments. In Experiment 1, 33 adult monolingual English speakers learned 24 novel word-object pairings, half of which were high English phonotactic probability words and the other half were low English phonotactic probability words. I additionally included three conditions that varied the amount of exposures to each novel word-object pairing (i.e. One Exposure Condition, Two Exposures Conditions, and Five Exposures Condition). Experiment 2 was designed to clarify results found in Experiment 1, with improved randomization and fewer conditions (i.e. One Exposure Condition and Five Exposures Condition). The findings from both experiments were statistically significant in accuracy for Training condition, but not statistically significant for phonotactic probability nor for an interaction between phonotactic probability and Training condition. Although participants demonstrated learning across conditions there is no indication of a relationship between high and low phonotactic probability and novel word recognition. Collectively, these findings suggest that future studies will be necessary to determine if there is indeed an effect of phonotactic probability on early novel word recognition.
ContributorsQuinones, Sara Cristina (Co-author) / Quiñones, Sara (Co-author) / Benitez, Viridiana (Thesis director) / Tecedor Cabrero, Marta (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131260-Thumbnail Image.png
Description
Machine learning is the process of training a computer with algorithms to learn from data and make informed predictions. In a world where large amounts of data are constantly collected, machine learning is an important tool to analyze this data to find patterns and learn useful information from it. Machine

Machine learning is the process of training a computer with algorithms to learn from data and make informed predictions. In a world where large amounts of data are constantly collected, machine learning is an important tool to analyze this data to find patterns and learn useful information from it. Machine learning applications expand to numerous fields; however, I chose to focus on machine learning with a business perspective for this thesis, specifically e-commerce.

The e-commerce market utilizes information to target customers and drive business. More and more online services have become available, allowing consumers to make purchases and interact with an online system. For example, Amazon is one of the largest Internet-based retail companies. As people shop through this website, Amazon gathers huge amounts of data on its customers from personal information to shopping history to viewing history. After purchasing a product, the customer may leave reviews and give a rating based on their experience. Performing analytics on all of this data can provide insights into making more informed business and marketing decisions that can lead to business growth and also improve the customer experience.
For this thesis, I have trained binary classification models on a publicly available product review dataset from Amazon to predict whether a review has a positive or negative sentiment. The sentiment analysis process includes analyzing and encoding the human language, then extracting the sentiment from the resulting values. In the business world, sentiment analysis provides value by revealing insights into customer opinions and their behaviors. In this thesis, I will explain how to perform a sentiment analysis and analyze several different machine learning models. The algorithms for which I compared the results are KNN, Logistic Regression, Decision Trees, Random Forest, Naïve Bayes, Linear Support Vector Machines, and Support Vector Machines with an RBF kernel.
ContributorsMadaan, Shreya (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132774-Thumbnail Image.png
Description
Machine learning is one of the fastest growing fields and it has applications in almost any industry. Predicting sports games is an obvious use case for machine learning, data is relatively easy to collect, generally complete data is available, and outcomes are easily measurable. Predicting the outcomes of sports events

Machine learning is one of the fastest growing fields and it has applications in almost any industry. Predicting sports games is an obvious use case for machine learning, data is relatively easy to collect, generally complete data is available, and outcomes are easily measurable. Predicting the outcomes of sports events may also be easily profitable, predictions can be taken to a sportsbook and wagered on. A successful prediction model could easily turn a profit. The goal of this project was to build a model using machine learning to predict the outcomes of NBA games.
In order to train the model, data was collected from the NBA statistics website. The model was trained on games dating from the 2010 NBA season through the 2017 NBA season. Three separate models were built, predicting the winner, predicting the total points, and finally predicting the margin of victory for a team. These models learned on 80 percent of the data and validated on the other 20 percent. These models were trained for 40 epochs with a batch size of 15.
The model for predicting the winner achieved an accuracy of 65.61 percent, just slightly below the accuracy of other experts in the field of predicting the NBA. The model for predicting total points performed decently as well, it could beat Las Vegas’ prediction 50.04 percent of the time. The model for predicting margin of victory also did well, it beat Las Vegas 50.58 percent of the time.
Created2019-05