This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 9 of 9
Filtering by

Clear all filters

136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133599-Thumbnail Image.png
Description
The goal of my study is to test the overarching hypothesis that art therapy is effective because it targets emotional dysregulation that often accompanies significant health stressors. By reducing the salience of illness-related stressors, art therapy may improve overall mood and recovery, particularly in patients with cancer. After consulting the

The goal of my study is to test the overarching hypothesis that art therapy is effective because it targets emotional dysregulation that often accompanies significant health stressors. By reducing the salience of illness-related stressors, art therapy may improve overall mood and recovery, particularly in patients with cancer. After consulting the primary literature and review papers to develop psychological and neural mechanisms at work in art therapy, I created a hypothetical experimental procedure to test these hypotheses to explain why art therapy is helpful to patients with chronic illness. Studies found that art therapy stimulates activity of multiple brain regions involved in memory retrieval and the arousal of emotions. I hypothesize that patients with chronic illness have a reduced capacity for emotion regulation, or difficulty recognizing, expressing or altering illness-related emotions (Gross & Barrett, 2011). Further I hypothesize that art therapy improves mood and therapeutic outcomes by acting on the emotion-processing regions of the limbic system, and thereby facilitating the healthy expression of emotion, emotional processing, and reappraisal. More mechanistically, I propose art therapy reduces the perception or salience of stressors by reducing amygdala activity leading to decreased activation of the hypothalamic-pituitary-adrenal (HPA) axis. The art therapy literature and my hypothesis about its mechanisms of action became the basis of my proposed study. To assess the effectiveness of art therapy in alleviating symptoms of chronic disease, I am specifically targeting patients with cancer who exhibit a lack of emotional regulation. Saliva is collected 3 times a week on the day of intervention: morning after waking, afternoon, and evening. Stress levels are tested using one-hour art therapy sessions over the course of 3 months. The Perceived Stress Scale (PSS) assesses an individual's perceived stress and feelings in past and present situations, for the control and intervention group. To measure improvement in overall mood, 10 one-hour art sessions are performed on patients over 10 weeks. A one-hour discussion analyzing the participants' artwork follows each art session. The Spielberger State-Trait Anxiety Inventory (STAI) assesses overall mood for the intervention and control groups. I created rationale and predictions based on the intended results of each experiment.
ContributorsAluri, Bineetha C. (Author) / Orchinik, Miles (Thesis director) / Davis, Mary (Committee member) / Essary, Alison (Committee member) / School of Life Sciences (Contributor) / School for the Science of Health Care Delivery (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133788-Thumbnail Image.png
Description
This paper explores the idea of xenophilia and the circumstances under which it may occur. Xenophilia is the preference for an outgroup member over an ingroup member. This preference does not have to be amicable, and in fact can be exploitative under certain circumstances. Previous research indicates that xenophobia is

This paper explores the idea of xenophilia and the circumstances under which it may occur. Xenophilia is the preference for an outgroup member over an ingroup member. This preference does not have to be amicable, and in fact can be exploitative under certain circumstances. Previous research indicates that xenophobia is much more common, but a few researchers have found support for the existence of xenophilia. To experimentally test the circumstances under which xenophilia might occur, I conducted a survey-based experiment on Amazon’s Mechanical Turk. This consisted of directed visualizations that manipulated participant goal (self-protection vs. mate acquisition) and the resources offered by both a fictitious outgroup and the hometown ingroup, followed by measures of ingroup/outgroup preference. I hypothesized that when the resource offered by the group addressed the participants’ goal, they would prefer the group with the “matched” resource—even if it was the outgroup providing that resource. My hypothesis was not supported, as the univariate analysis of variance for preference for the outgroup was not significant, F (2, 423) = .723, p = .486. This may have occurred because the goal manipulations were not strong enough to counteract the strong natural preference for ingroup members.
ContributorsDrury, Margaret E. (Author) / Neuberg, Steven (Thesis director) / Davis, Mary (Committee member) / Kenrick, Douglas (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Cardiovascular disease is the leading cause of death in the United States, and classic risk factors only predict half of the variance of cases. In this study, parental overprotection and temperamental negative affectivity both significantly correlated with blood pressure and heart rate, which suggests the importance of examining early life

Cardiovascular disease is the leading cause of death in the United States, and classic risk factors only predict half of the variance of cases. In this study, parental overprotection and temperamental negative affectivity both significantly correlated with blood pressure and heart rate, which suggests the importance of examining early life factors when determining one's risk for CVD.
ContributorsCarter, Steven Cross (Author) / Luecken, Linda (Thesis director) / Presson, Clark (Committee member) / Davis, Mary (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2013-05
148148-Thumbnail Image.png
Description

This thesis project is the result of close collaboration with the Arizona State University Biodesign Clinical Testing Laboratory (ABCTL) to document the characteristics of saliva as a test sample, preanalytical considerations, and how the ABCTL utilized saliva testing to develop swift COVID-19 diagnostic tests for the Arizona community. As of

This thesis project is the result of close collaboration with the Arizona State University Biodesign Clinical Testing Laboratory (ABCTL) to document the characteristics of saliva as a test sample, preanalytical considerations, and how the ABCTL utilized saliva testing to develop swift COVID-19 diagnostic tests for the Arizona community. As of April 2021, there have been over 130 million recorded cases of COVID-19 globally, with the United States taking the lead with approximately 31.5 million cases. Developing highly accurate and timely diagnostics has been an important need of our country that the ABCTL has had tremendous success in delivering. Near the start of the pandemic, the ABCTL utilized saliva as a testing sample rather than nasopharyngeal (NP) swabs that were limited in supply, required highly trained medical personnel, and were generally uncomfortable for participants. Results from literature across the globe showed how saliva performed just as well as the NP swabs (the golden standard) while being an easier test to collect and analyze. Going forward, the ABCTL will continue to develop high quality diagnostic tools and adapt to the ever-evolving needs our communities face regarding the COVID-19 pandemic.

ContributorsSmetanick, Jennifer (Author) / Compton, Carolyn (Thesis director) / Magee, Mitch (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148152-Thumbnail Image.png
Description

In the middle of the COVID-19 epidemic, flaws in the SARS-CoV-2 diagnostic
test were identified by the impending supply shortages of nasopharyngeal swabs and nucleic acid isolation and purification kits. The ASU Biodesign Clinical Testing Lab (ABCTL), which converted from a research lab to SARS-CoV-2 testing lab, was not an exception

In the middle of the COVID-19 epidemic, flaws in the SARS-CoV-2 diagnostic
test were identified by the impending supply shortages of nasopharyngeal swabs and nucleic acid isolation and purification kits. The ASU Biodesign Clinical Testing Lab (ABCTL), which converted from a research lab to SARS-CoV-2 testing lab, was not an exception to these shortages, but the consequences were greater due to its significant testing load in the state of Arizona. In response to the shortages, researchers at The Department of Epidemiology of Microbial Diseases, at the Yale School of Public Health created SalivaDirect method, which is an epidemic effective test, that accounts for limitations of materials, accessibility to specialized lab equipment, time per test, and cost per test. SalivaDirect simplified the diagnostic process by collecting samples via saliva and skipping the nucleic acid extraction and purification, and did it in a way that resulted in a highly sensitive limit of detection of 6-12 SARS-CoV-2 copies/μL with a minimal decrease in positive test agreement.

ContributorsBreshears, Scott (Co-author) / Anderson, Laura (Co-author) / Majhail, Kajol (Co-author) / Raun, Ellen (Co-author) / Smetanick, Jennifer (Co-author) / Compton, Carolyn (Thesis director) / Magee, Mitch (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148153-Thumbnail Image.png
Description

The ASU Biodesign Clinical Testing Laboratory began in March 2020 after the severe acute respiratory syndrome, coronavirus 2, began spreading throughout the world. ASU worked towards implementing  its own efficient way of testing for the virus, in order to assist the university but also keep the communities around it safe.

The ASU Biodesign Clinical Testing Laboratory began in March 2020 after the severe acute respiratory syndrome, coronavirus 2, began spreading throughout the world. ASU worked towards implementing  its own efficient way of testing for the virus, in order to assist the university but also keep the communities around it safe. By developing its own strategy for COVID-19 testing, ASU was on the forefront of research by developing new ways to test for the virus. This process began when research labs at ASU were quickly converted into clinical testing laboratories, which used saliva testing to develop swift COVID-19 diagnostic tests for the Arizona community. The lab developed more accurate and time efficient results, while also converting Nasopharyngeal tests to saliva tests. Not only did this allow for fewer amounts of resources required, but more individuals were able to get tested at faster rates. The ASU Biodesign Clinical Testing Laboratory (ABCTL) was able to accomplish this through the adaptation of previous machines and personnel to fit the testing needs of the community. In the future, the ABCTL will continue to adapt to the ever-changing needs of the community in regards to the unprecedented COVID-19 pandemic. The research collected throughout the past year following the breakout of the COVID-19 pandemic is a reflection of the impressive strategy ASU has created to keep its communities safe, while continuously working towards improving not only the testing sites and functions, but also the ways in which an institution approaches and manages an unfortunate impact on diverse communities.

ContributorsMajhail, Kajol (Co-author) / Smetanick, Jennifer (Co-author) / Anderson, Laura (Co-author) / Ruan, Ellen (Co-author) / Shears, Scott (Co-author) / Compton, Carolyn (Thesis director) / Magee, Mitch (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148156-Thumbnail Image.png
Description

This thesis project is part of a larger collaboration documenting the history of the ASU Biodesign Clinical Testing Laboratory (ABCTL). There are many different aspects that need to be considered when transforming to a clinical testing laboratory. This includes the different types of tests performed in the laboratory. In addition

This thesis project is part of a larger collaboration documenting the history of the ASU Biodesign Clinical Testing Laboratory (ABCTL). There are many different aspects that need to be considered when transforming to a clinical testing laboratory. This includes the different types of tests performed in the laboratory. In addition to the diagnostic polymerase chain reaction (PCR) test that is performed detecting the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), antibody testing is also performed in clinical laboratories. Antibody testing is used to detect a previous infection. Antibodies are produced as part of the immune response against SARS-CoV-2. There are many different forms of antibody tests and their sensitives and specificities have been examined and reviewed in the literature. Antibody testing can be used to determine the seroprevalence of the disease which can inform policy decisions regarding public health strategies. The results from antibody testing can also be used for creating new therapeutics like vaccines. The ABCTL recognizes the shifting need of the community to begin testing for previous infections of SARS-CoV-2 and is developing new forms of antibody testing that can meet them.

ContributorsRuan, Ellen (Co-author) / Smetanick, Jennifer (Co-author) / Majhail, Kajol (Co-author) / Anderson, Laura (Co-author) / Breshears, Scott (Co-author) / Compton, Carolyn (Thesis director) / Magee, Mitch (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131965-Thumbnail Image.png
Description
Hand-coding systems of measuring facial expressions were developed to study and analyze human emotions, but they are time-intensive and thus seldom used. As technology has advanced, new computer software programs, such as Affectiva, were developed to code facial expressions automatically using artificial intelligence and machine learning. Since this technology is

Hand-coding systems of measuring facial expressions were developed to study and analyze human emotions, but they are time-intensive and thus seldom used. As technology has advanced, new computer software programs, such as Affectiva, were developed to code facial expressions automatically using artificial intelligence and machine learning. Since this technology is still new, Affectiva and its validity remain understudied, and no psychological research has been conducted to compare Affectiva computer coding and hand coding of children’s emotions. The purpose of this study was to compare hand and computer coding of children’s expressions of emotion during a videotaped parent-child interaction. The study answered the following questions: 1) Do hand and computer coding agree?; and 2) Are hand and computer coding in higher agreement for some emotions than others? The sample included 25 pairs of twins from the Arizona Twin Project. Facial expressions were coded from videotape by a trained and reliable human coder and using the software Affectiva. The results showed that hand and computer coded emotion were in agreement for positive, but not negative emotions. Changing the context of the interaction to elicit more negative emotion, and using the same indicators of each emotion in computer and hand coding are suggested to improve the comparison of computer and hand coding.
ContributorsKwok, Connie (Author) / Lemery-Chalfant, Kathryn (Thesis director) / Davis, Mary (Committee member) / Miadich, Samantha (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05