This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156205-Thumbnail Image.png
Description
The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how

The subliminal impact of framing of social, political and environmental issues such as climate change has been studied for decades in political science and communications research. Media framing offers an “interpretative package" for average citizens on how to make sense of climate change and its consequences to their livelihoods, how to deal with its negative impacts, and which mitigation or adaptation policies to support. A line of related work has used bag of words and word-level features to detect frames automatically in text. Such works face limitations since standard keyword based features may not generalize well to accommodate surface variations in text when different keywords are used for similar concepts.

This thesis develops a unique type of textual features that generalize triplets extracted from text, by clustering them into high-level concepts. These concepts are utilized as features to detect frames in text. Compared to uni-gram and bi-gram based models, classification and clustering using generalized concepts yield better discriminating features and a higher classification accuracy with a 12% boost (i.e. from 74% to 83% F-measure) and 0.91 clustering purity for Frame/Non-Frame detection.

The automatic discovery of complex causal chains among interlinked events and their participating actors has not yet been thoroughly studied. Previous studies related to extracting causal relationships from text were based on laborious and incomplete hand-developed lists of explicit causal verbs, such as “causes" and “results in." Such approaches result in limited recall because standard causal verbs may not generalize well to accommodate surface variations in texts when different keywords and phrases are used to express similar causal effects. Therefore, I present a system that utilizes generalized concepts to extract causal relationships. The proposed algorithms overcome surface variations in written expressions of causal relationships and discover the domino effects between climate events and human security. This semi-supervised approach alleviates the need for labor intensive keyword list development and annotated datasets. Experimental evaluations by domain experts achieve an average precision of 82%. Qualitative assessments of causal chains show that results are consistent with the 2014 IPCC report illuminating causal mechanisms underlying the linkages between climatic stresses and social instability.
ContributorsAlashri, Saud (Author) / Davulcu, Hasan (Thesis advisor) / Desouza, Kevin C. (Committee member) / Maciejewski, Ross (Committee member) / Hsiao, Sharon (Committee member) / Arizona State University (Publisher)
Created2018
157095-Thumbnail Image.png
Description
An old proverb claims that “two heads are better than one”. Crowdsourcing research and practice have taken this to heart, attempting to show that thousands of heads can be even better. This is not limited to leveraging a crowd’s knowledge, but also their creativity—the ability to generate something not only

An old proverb claims that “two heads are better than one”. Crowdsourcing research and practice have taken this to heart, attempting to show that thousands of heads can be even better. This is not limited to leveraging a crowd’s knowledge, but also their creativity—the ability to generate something not only useful, but also novel. In practice, there are initiatives such as Free and Open Source Software communities developing innovative software. In research, the field of crowdsourced creativity, which attempts to design scalable support mechanisms, is blooming. However, both contexts still present many opportunities for advancement.

In this dissertation, I seek to advance both the knowledge of limitations in current technologies used in practice as well as the mechanisms that can be used for large-scale support. The overall research question I explore is: “How can we support large-scale creative collaboration in distributed online communities?” I first advance existing support techniques by evaluating the impact of active support in brainstorming performance. Furthermore, I leverage existing theoretical models of individual idea generation as well as recommender system techniques to design CrowdMuse, a novel adaptive large-scale idea generation system. CrowdMuse models users in order to adapt itself to each individual. I evaluate the system’s efficacy through two large-scale studies. I also advance knowledge of current large-scale practices by examining common communication channels under the lens of Creativity Support Tools, yielding a list of creativity bottlenecks brought about by the affordances of these channels. Finally, I connect both ends of this dissertation by deploying CrowdMuse in an Open Source online community for two weeks. I evaluate their usage of the system as well as its perceived benefits and issues compared to traditional communication tools.

This dissertation makes the following contributions to the field of large-scale creativity: 1) the design and evaluation of a first-of-its-kind adaptive brainstorming system; 2) the evaluation of the effects of active inspirations compared to simple idea exposure; 3) the development and application of a set of creativity support design heuristics to uncover creativity bottlenecks; and 4) an exploration of large-scale brainstorming systems’ usefulness to online communities.
Contributorsda Silva Girotto, Victor Augusto (Author) / Walker, Erin A (Thesis advisor) / Burleson, Winslow (Thesis advisor) / Maciejewski, Ross (Committee member) / Hsiao, Sharon (Committee member) / Bigham, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2019