This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 156
151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152202-Thumbnail Image.png
Description
This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission

This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.
ContributorsRuggiero, John (Author) / Heydt, Gerald T (Thesis advisor) / Datta, Rajib (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2013
152258-Thumbnail Image.png
Description
Underground cables have been widely used in big cities. This is because underground cables offer the benefits of reducing visual impact and the disturbance caused by bad weather (wind, ice, snow, and the lightning strikes). Additionally, when placing power lines underground, the maintenance costs can also be reduced as a

Underground cables have been widely used in big cities. This is because underground cables offer the benefits of reducing visual impact and the disturbance caused by bad weather (wind, ice, snow, and the lightning strikes). Additionally, when placing power lines underground, the maintenance costs can also be reduced as a result. The underground cable rating calculation is the most critical part of designing the cable construction and cable installation. In this thesis, three contributions regarding the cable ampacity study have been made. First, an analytical method for rating of underground cables has been presented. Second, this research also develops the steady state and transient ratings for Salt River Project (SRP) 69 kV underground system using the commercial software CYMCAP for several typical substations. Third, to find an alternative way to predict the cable ratings, three regression models have been built. The residual plot and mean square error for the three methods have been analyzed. The conclusion is dawn that the nonlinear regression model provides the sufficient accuracy of the cable rating prediction for SRP's typical installation.
ContributorsWang, Tong (Author) / Tylavsky, Daniel (Thesis advisor) / Karady, George G. (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2013
151729-Thumbnail Image.png
Description
This thesis concerns the flashover issue of the substation insulators operating in a polluted environment. The outdoor insulation equipment used in the power delivery infrastructure encounter different types of pollutants due to varied environmental conditions. Various methods have been developed by manufacturers and researchers to mitigate the flashover problem. The

This thesis concerns the flashover issue of the substation insulators operating in a polluted environment. The outdoor insulation equipment used in the power delivery infrastructure encounter different types of pollutants due to varied environmental conditions. Various methods have been developed by manufacturers and researchers to mitigate the flashover problem. The application of Room Temperature Vulcanized (RTV) silicone rubber is one such favorable method as it can be applied over the already installed units. Field experience has already showed that the RTV silicone rubber coated insulators have a lower flashover probability than the uncoated insulators. The scope of this research is to quantify the improvement in the flashover performance. Artificial contamination tests were carried on station post insulators for assessing their performance. A factorial experiment design was used to model the flashover performance. The formulation included the severity of contamination and leakage distance of the insulator samples. Regression analysis was used to develop a mathematical model from the data obtained from the experiments. The main conclusion drawn from the study is that the RTV coated insulators withstood much higher levels of contamination even when the coating had lost its hydrophobicity. This improvement in flashover performance was found to be in the range of 20-40%. A much better flashover performance was observed when the coating recovered its hydrophobicity. It was also seen that the adhesion of coating was excellent even after many tests which involved substantial discharge activity.
ContributorsGholap, Vipul (Author) / Gorur, Ravi S (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151824-Thumbnail Image.png
Description
There is a lack of music therapy services for college students who have problems with depression and/or anxiety. Even among universities and colleges that offer music therapy degrees, there are no known programs offering music therapy to the institution's students. Female college students are particularly vulnerable to depression and anxiety

There is a lack of music therapy services for college students who have problems with depression and/or anxiety. Even among universities and colleges that offer music therapy degrees, there are no known programs offering music therapy to the institution's students. Female college students are particularly vulnerable to depression and anxiety symptoms compared to their male counterparts. Many students who experience mental health problems do not receive treatment, because of lack of knowledge, lack of services, or refusal of treatment. Music therapy is proposed as a reliable and valid complement or even an alternative to traditional counseling and pharmacotherapy because of the appeal of music to young women and the potential for a music therapy group to help isolated students form supportive networks. The present study recruited 14 female university students to participate in a randomized controlled trial of short-term group music therapy to address symptoms of depression and anxiety. The students were randomly divided into either the treatment group or the control group. Over 4 weeks, each group completed surveys related to depression and anxiety. Results indicate that the treatment group's depression and anxiety scores gradually decreased over the span of the treatment protocol. The control group showed either maintenance or slight worsening of depression and anxiety scores. Although none of the results were statistically significant, the general trend indicates that group music therapy was beneficial for the students. A qualitative analysis was also conducted for the treatment group. Common themes were financial concerns, relationship problems, loneliness, and time management/academic stress. All participants indicated that they benefited from the sessions. The group progressed in its cohesion and the participants bonded to the extent that they formed a supportive network which lasted beyond the end of the protocol. The results of this study are by no means conclusive, but do indicate that colleges with music therapy degree programs should consider adding music therapy services for their general student bodies.
ContributorsAshton, Barbara (Author) / Crowe, Barbara J. (Thesis advisor) / Rio, Robin (Committee member) / Davis, Mary (Committee member) / Arizona State University (Publisher)
Created2013
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152482-Thumbnail Image.png
Description
Renewable portfolio standards prescribe for penetration of high amounts of re-newable energy sources (RES) that may change the structure of existing power systems. The load growth and changes in power flow caused by RES integration may result in re-quirements of new available transmission capabilities and upgrades of existing transmis-sion paths.

Renewable portfolio standards prescribe for penetration of high amounts of re-newable energy sources (RES) that may change the structure of existing power systems. The load growth and changes in power flow caused by RES integration may result in re-quirements of new available transmission capabilities and upgrades of existing transmis-sion paths. Construction difficulties of new transmission lines can become a problem in certain locations. The increase of transmission line thermal ratings by reconductoring using High Temperature Low Sag (HTLS) conductors is a comparatively new technology introduced to transmission expansion. A special design permits HTLS conductors to operate at high temperatures (e.g., 200oC), thereby allowing passage of higher current. The higher temperature capability increases the steady state and emergency thermal ratings of the transmission line. The main disadvantage of HTLS technology is high cost. The high cost may place special emphasis on a thorough analysis of cost to benefit of HTLS technology im-plementation. Increased transmission losses in HTLS conductors due to higher current may be a disadvantage that can reduce the attractiveness of this method. Studies described in this thesis evaluate the expenditures for transmission line re-conductoring using HTLS and the consequent benefits obtained from the potential decrease in operating cost for thermally limited transmission systems. Studies performed consider the load growth and penetration of distributed renewable energy sources according to the renewable portfolio standards for power systems. An evaluation of payback period is suggested to assess the cost to benefit ratio of HTLS upgrades. The thesis also considers the probabilistic nature of transmission upgrades. The well-known Chebyshev inequality is discussed with an application to transmission up-grades. The Chebyshev inequality is proposed to calculate minimum payback period ob-tained from the upgrades of certain transmission lines. The cost to benefit evaluation of HTLS upgrades is performed using a 225 bus equivalent of the 2012 summer peak Arizona portion of the Western Electricity Coordi-nating Council (WECC).
ContributorsTokombayev, Askhat (Author) / Heydt, Gerald T. (Thesis advisor) / Sankar, Lalitha (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2014
Description
The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and

The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and good material performance with temperature. HTLS conductors like Aluminum Conductor Composite Reinforced (ACCR) and Aluminum Conductor Carbon Composite (ACCC) are expected to face high operating temperatures of 150-200 degree Celsius in order to achieve the desired increased power flow. Therefore, it is imperative to characterize the material performance of these conductors with temperature. The work presented in this thesis addresses the characterization of carbon composite core based and metal matrix core based HTLS conductors. The thesis focuses on the study of variation of tensile strength of the carbon composite core with temperature and the level of temperature rise of the HTLS conductors due to fault currents cleared by backup protection. In this thesis, Dynamic Mechanical Analysis (DMA) was used to quantify the loss in storage modulus of carbon composite cores with temperature. It has been previously shown in literature that storage modulus is correlated to the tensile strength of the composite. Current temperature relationships of HTLS conductors were determined using the IEEE 738-2006 standard. Temperature rise of these conductors due to fault currents were also simulated. All simulations were performed using Microsoft Visual C++ suite. Tensile testing of metal matrix core was also performed. Results of DMA on carbon composite cores show that the storage modulus, hence tensile strength, decreases rapidly in the temperature range of intended use. DMA on composite cores subjected to heat treatment were conducted to investigate any changes in the variation of storage modulus curves. The experiments also indicates that carbon composites cores subjected to temperatures at or above 250 degree Celsius can cause permanent loss of mechanical properties including tensile strength. The fault current temperature analysis of carbon composite based conductors reveal that fault currents eventually cleared by backup protection in the event of primary protection failure can cause damage to fiber matrix interface.
ContributorsBanerjee, Koustubh (Author) / Gorur, Ravi (Committee member) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
152639-Thumbnail Image.png
Description
Sometimes difficult life events challenge our existing resources in such a way that routinized responses are inadequate to handle the challenge. Some individuals will persist in habitual, automatic behavior, regardless of environmental cues that indicate a mismatch between coping strategy and the demands of the stressor. Other individuals will marshal

Sometimes difficult life events challenge our existing resources in such a way that routinized responses are inadequate to handle the challenge. Some individuals will persist in habitual, automatic behavior, regardless of environmental cues that indicate a mismatch between coping strategy and the demands of the stressor. Other individuals will marshal adaptive resources to construct new courses of action and reconceptualize the problem, associated goals and/or values. A mixed methods approach was used to describe and operationalize cognitive shift, a relatively unexplored construct in existing literature. The study was conducted using secondary data from a parent multi-year cross-sectional study of resilience with eight hundred mid-aged adults from the Phoenix metro area. Semi-structured telephone interviews were analyzed using a purposive sample (n=136) chosen by type of life event. Participants' beliefs, assumptions, and experiences were examined to understand how they shaped adaptation to adversity. An adaptive mechanism, "cognitive shift," was theorized as the transition from automatic coping to effortful cognitive processes aimed at novel resolution of issues. Aims included understanding when and how cognitive shift emerges and manifests. Cognitive shift was scored as a binary variable and triangulated through correlational and logistic regression analyses. Interaction effects revealed that positive personality attributes influence cognitive shift most when people suffered early adversity. This finding indicates that a certain complexity, self-awareness and flexibility of mind may lead to a greater capacity to find meaning in adversity. This work bridges an acknowledged gap in literature and provides new insights into resilience.
ContributorsRivers, Crystal T (Author) / Zautra, Alex (Thesis advisor) / Davis, Mary (Committee member) / Kurpius, Sharon (Committee member) / Arizona State University (Publisher)
Created2014
152908-Thumbnail Image.png
Description
A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling

A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling technology for this particular circuit to attain good efficiency.

Traditionally, grid connected PV inverters required a transformer for isolation and safety. The disadvantage of high frequency transformer based inverters is complexity and cost. Transformerless inverters have become more popular recently, although they can be challenging to implement because of possible high frequency currents through the PV array's stay capacitance to earth ground. Conventional PV inverters also typically utilize electrolytic capacitors for bulk power buffering. However such capacitors can be prone to decreased reliability.

The solution proposed here to solve these problems is a bi directional buck boost converter combined with half bridge inverters. This configuration enables grounding of the array's negative terminal and passive power decoupling with only film capacitors.

Several aspects of the proposed converter are discussed. First a literature review is presented on the issues to be addressed. The proposed circuit is then presented and examined in detail. This includes theory of operation, component selection, and control systems. An efficiency analysis is also conducted. Simulation results are then presented that show correct functionality. A hardware prototype is built and experiment results also prove the concept. Finally some further developments are mentioned.

As a summary of the research a new topology and control technique were developed. The resultant circuit is a high performance transformerless PV inverter with upwards of 97% efficiency.
ContributorsBreazeale, Lloyd C (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2014