This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

134584-Thumbnail Image.png
Description
There are two common cognitive distortions present in risky decision-making behavior. The gambler's fallacy is the notion that a random game of chance is potentially biased by previous outcomes, and the near-miss effect is the overestimation of the probability of winning immediately after barely missing a win. This study replicated

There are two common cognitive distortions present in risky decision-making behavior. The gambler's fallacy is the notion that a random game of chance is potentially biased by previous outcomes, and the near-miss effect is the overestimation of the probability of winning immediately after barely missing a win. This study replicated a portion of the methods of Clark et al. (2014) in an attempt to support the presence of these two fallacies in online simulated risky decision-making tasks. One hundred individuals were recruited and asked to perform one of two classic gambling tasks, either predict the outcome of a dichromatic roulette wheel or spin a simplified, two-reel slot machine. An analysis of color predictions as a function of run length revealed a classic gambler's fallacy effect in the roulette wheel task. A heightened motivation to continue playing after a win, but not a near or full miss, was seen in the slot machine task. How pleased an individual was with the results of the previous round directly affected his or her interest in continuing to play in both experiments. These findings indicate that the gambler's fallacy is present in online decision-making simulations involving risk, but that the near-miss effect is not.
ContributorsCatinchi, Alexis Leigh (Author) / McClure, Samuel (Thesis director) / Glenberg, Arthur (Committee member) / Gatewood, Kira (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133094-Thumbnail Image.png
Description
The use of functional magnetic resonance imaging (fMRI) has been increasing in popularity due to its ability to measure brain activity during presentation of stimuli. Blood flow responses in the brain occur when a stimulus is presented and can be measured using fMRI. The delay of onset of this blood

The use of functional magnetic resonance imaging (fMRI) has been increasing in popularity due to its ability to measure brain activity during presentation of stimuli. Blood flow responses in the brain occur when a stimulus is presented and can be measured using fMRI. The delay of onset of this blood flow response can vary due to distances from the heart to the brain blood vessels. This variability causes differences in onset and time to peak blood flow response across the brain that is not currently predictable. To account for this, statistical analyses add the response's temporal derivative to regression models. Derived from the Taylor series expansion, the temporal derivative corrects for small variations in the time delay for the blood flow response (i.e. less than 1 second or so). However, I show that inclusion of the temporal derivative in analyses increases false positive rates. I conducted fMRI analyses on data collected as participants complete motor responses and on resting state data. Analyses were repeated both with and without inclusion of the temporal derivative. More significant responses were found with inclusion of the temporal derivative in both cases, suggesting possible increases in false positive rates. The goal of the present study is to increase awareness of the current fMRI data analysis practices and their potential flaws.
ContributorsTemporini, Victoria (Author) / McClure, Samuel (Thesis director) / Glenberg, Arthur (Committee member) / Elliott, Blake (Committee member) / Department of Psychology (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134068-Thumbnail Image.png
Description
The frontostriatal reward circuit serves an underlying role in reward processing, cognitive planning, and motor control in the context of achieving a goal. Furthermore, research suggests a relationship between the reward circuits and behavior expressed in Attention Deficit Hyperactivity Disorder (ADHD); however, the specific structural differences of the reward circuits

The frontostriatal reward circuit serves an underlying role in reward processing, cognitive planning, and motor control in the context of achieving a goal. Furthermore, research suggests a relationship between the reward circuits and behavior expressed in Attention Deficit Hyperactivity Disorder (ADHD); however, the specific structural differences of the reward circuits in those with ADHD remain ambiguous. Diffusion tensor imaging (DTI) techniques were used to analyze diffusion weighted magnetic resonance imaging (DWI) data in order to examine the structural connectivity of frontostriatal reward pathways in ADHD adolescents compared to typically developing (TD) adolescents. It was hypothesized that measures of impulsivity would be predicted by white matter tract integrity measures in frontostriatal tracts related to affective processing (ventromedial prefrontal cortex to ventral striatum, vmPFC) in adolescents with ADHD, and that there would be reduced tract integrity in tracts related to executive control (dorsolateral prefrontal and anterior cingulate cortex—dlPFC and ACC, respectively). Frontostriatal tracts as well as the hippocampus and amygdala were examined in relation to age and impulsivity using both correlation and regression models. Results indicated that impulsivity declined with age in the TD group while no significant trend was identified for the ADHD group. The hypotheses were not supported and results for both predictions on the affective and executive circuits showed opposite trends from what was expected.
ContributorsHarrison, Sydney Rae (Author) / McClure, Samuel (Thesis director) / Brewer, Gene (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12