This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 202
151718-Thumbnail Image.png
Description
The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a

The increasing popularity of Twitter renders improved trustworthiness and relevance assessment of tweets much more important for search. However, given the limitations on the size of tweets, it is hard to extract measures for ranking from the tweet's content alone. I propose a method of ranking tweets by generating a reputation score for each tweet that is based not just on content, but also additional information from the Twitter ecosystem that consists of users, tweets, and the web pages that tweets link to. This information is obtained by modeling the Twitter ecosystem as a three-layer graph. The reputation score is used to power two novel methods of ranking tweets by propagating the reputation over an agreement graph based on tweets' content similarity. Additionally, I show how the agreement graph helps counter tweet spam. An evaluation of my method on 16~million tweets from the TREC 2011 Microblog Dataset shows that it doubles the precision over baseline Twitter Search and achieves higher precision than current state of the art method. I present a detailed internal empirical evaluation of RAProp in comparison to several alternative approaches proposed by me, as well as external evaluation in comparison to the current state of the art method.
ContributorsRavikumar, Srijith (Author) / Kambhampati, Subbarao (Thesis advisor) / Davulcu, Hasan (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2013
152236-Thumbnail Image.png
Description
Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary

Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary development and delivery, and encourages rapid and flexible response to change. However, several problems prevent Continuous Delivery to be introduced into education world. Taking into the consideration of the barriers, we propose a new Cloud based Continuous Delivery Software Developing System. This system is designed to fully utilize the whole life circle of software developing according to Continuous Delivery concepts in a virtualized environment in Vlab platform.
ContributorsDeng, Yuli (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2013
151785-Thumbnail Image.png
Description
This dissertation explores the role of smart home service provisions (SHSP) as motivational agents supporting goal attainment and human flourishing. Evoking human flourishing as a lens for interaction encapsulates issues of wellbeing, adaptation and problem solving within the context of social interaction. To investigate this line of research a new,

This dissertation explores the role of smart home service provisions (SHSP) as motivational agents supporting goal attainment and human flourishing. Evoking human flourishing as a lens for interaction encapsulates issues of wellbeing, adaptation and problem solving within the context of social interaction. To investigate this line of research a new, motivation-sensitive approach to design was implemented. This approach combined psychometric analysis from motivational psychology's Personal Project Analysis (PPA) and Place Attachment theory's Sense of Place (SoP) analysis to produce project-centered motivational models for environmental congruence. Regression analysis of surveys collected from 150 (n = 150) young adults about their homes revealed PPA motivational dimensions had significant main affects on all three SoP factors. Model one indicated PPA dimensions Fearful and Value Congruency predicted the SoP factor Place Attachment (p = 0.012). Model two indicated the PPA factor Positive Affect and PPA dimensions Value Congruency, Self Identity and Autonomy predicted Place Identity (p = .0003). Model three indicated PPA dimensions Difficulty and Likelihood of Success predicted the SoP factor Place Dependency. The relationships between motivational PPA dimensions and SoP demonstrated in these models informed creation of a set of motivational design heuristics. These heuristics guided 20 participants (n = 20) through co-design of paper prototypes of SHSPs supporting goal attainment and human flourishing. Normative analysis of these paper prototypes fashioned a design framework consisting of the use cases "make with me", "keep me on task" and "improve myself"; the four design principles "time and timing", "guidance and accountability", "project ambiguity" and "positivity mechanisms"; and the seven interaction models "structuring time", "prompt user", "gather resources", "consume content", "create content", "restrict and/or restore access to content" and "share content". This design framework described and evaluated three technology probes installed in the homes of three participants (n = 3) for field-testing over the course of one week. A priori and post priori samples of psychometric measures were inconclusive in determining if SHSP motivated goal attainment or increased environmental congruency between young adults and their homes.
ContributorsBrotman, Ryan Scott (Author) / Burleson, Winsow (Thesis advisor) / Heywood, William (Committee member) / Forlizzi, Jodi (Committee member) / Arizona State University (Publisher)
Created2013
151824-Thumbnail Image.png
Description
There is a lack of music therapy services for college students who have problems with depression and/or anxiety. Even among universities and colleges that offer music therapy degrees, there are no known programs offering music therapy to the institution's students. Female college students are particularly vulnerable to depression and anxiety

There is a lack of music therapy services for college students who have problems with depression and/or anxiety. Even among universities and colleges that offer music therapy degrees, there are no known programs offering music therapy to the institution's students. Female college students are particularly vulnerable to depression and anxiety symptoms compared to their male counterparts. Many students who experience mental health problems do not receive treatment, because of lack of knowledge, lack of services, or refusal of treatment. Music therapy is proposed as a reliable and valid complement or even an alternative to traditional counseling and pharmacotherapy because of the appeal of music to young women and the potential for a music therapy group to help isolated students form supportive networks. The present study recruited 14 female university students to participate in a randomized controlled trial of short-term group music therapy to address symptoms of depression and anxiety. The students were randomly divided into either the treatment group or the control group. Over 4 weeks, each group completed surveys related to depression and anxiety. Results indicate that the treatment group's depression and anxiety scores gradually decreased over the span of the treatment protocol. The control group showed either maintenance or slight worsening of depression and anxiety scores. Although none of the results were statistically significant, the general trend indicates that group music therapy was beneficial for the students. A qualitative analysis was also conducted for the treatment group. Common themes were financial concerns, relationship problems, loneliness, and time management/academic stress. All participants indicated that they benefited from the sessions. The group progressed in its cohesion and the participants bonded to the extent that they formed a supportive network which lasted beyond the end of the protocol. The results of this study are by no means conclusive, but do indicate that colleges with music therapy degree programs should consider adding music therapy services for their general student bodies.
ContributorsAshton, Barbara (Author) / Crowe, Barbara J. (Thesis advisor) / Rio, Robin (Committee member) / Davis, Mary (Committee member) / Arizona State University (Publisher)
Created2013
151371-Thumbnail Image.png
Description
This dissertation presents the Temporal Event Query Language (TEQL), a new language for querying event streams. Event Stream Processing enables online querying of streams of events to extract relevant data in a timely manner. TEQL enables querying of interval-based event streams using temporal database operators. Temporal databases and temporal query

This dissertation presents the Temporal Event Query Language (TEQL), a new language for querying event streams. Event Stream Processing enables online querying of streams of events to extract relevant data in a timely manner. TEQL enables querying of interval-based event streams using temporal database operators. Temporal databases and temporal query languages have been a subject of research for more than 30 years and are a natural fit for expressing queries that involve a temporal dimension. However, operators developed in this context cannot be directly applied to event streams. The research extends a preexisting relational framework for event stream processing to support temporal queries. The language features and formal semantic extensions to extend the relational framework are identified. The extended framework supports continuous, step-wise evaluation of temporal queries. The incremental evaluation of TEQL operators is formalized to avoid re-computation of previous results. The research includes the development of a prototype that supports the integrated event and temporal query processing framework, with support for incremental evaluation and materialization of intermediate results. TEQL enables reporting temporal data in the output, direct specification of conditions over timestamps, and specification of temporal relational operators. Through the integration of temporal database operators with event languages, a new class of temporal queries is made possible for querying event streams. New features include semantic aggregation, extraction of temporal patterns using set operators, and a more accurate specification of event co-occurrence.
ContributorsShiva, Foruhar Ali (Author) / Urban, Susan D (Thesis advisor) / Chen, Yi (Thesis advisor) / Davulcu, Hasan (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2012
151275-Thumbnail Image.png
Description
The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to

The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to an earn-as-you-go profit model for many cloud based applications. These applications can benefit from low level analyses for cost optimization and verification. Testing cloud applications to ensure they meet monetary cost objectives has not been well explored in the current literature. When considering revenues and costs for cloud applications, the resource economic model can be scaled down to the transaction level in order to associate source code with costs incurred while running in the cloud. Both static and dynamic analysis techniques can be developed and applied to understand how and where cloud applications incur costs. Such analyses can help optimize (i.e. minimize) costs and verify that they stay within expected tolerances. An adaptation of Worst Case Execution Time (WCET) analysis is presented here to statically determine worst case monetary costs of cloud applications. This analysis is used to produce an algorithm for determining control flow paths within an application that can exceed a given cost threshold. The corresponding results are used to identify path sections that contribute most to cost excess. A hybrid approach for determining cost excesses is also presented that is comprised mostly of dynamic measurements but that also incorporates calculations that are based on the static analysis approach. This approach uses operational profiles to increase the precision and usefulness of the calculations.
ContributorsBuell, Kevin, Ph.D (Author) / Collofello, James (Thesis advisor) / Davulcu, Hasan (Committee member) / Lindquist, Timothy (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
151600-Thumbnail Image.png
Description
Research has shown that the ability to smell is the most direct sense an individual can experience. With every breath a person takes, the brain recognizes thousands of molecules and makes connections with our memories to determine their composition. With the amount of research looking into how and why we

Research has shown that the ability to smell is the most direct sense an individual can experience. With every breath a person takes, the brain recognizes thousands of molecules and makes connections with our memories to determine their composition. With the amount of research looking into how and why we smell, researchers still have little understanding of how the nose and brain process an aroma, and how emotional and physical behavior is impacted. This research focused on the affects smell has on a caregiver in a simulated Emergency Department setting located in the SimET of Banner Good Samaritan Medical Center in Phoenix, Arizona. The study asked each participant to care for a programmed mannequin, or "patient", while performing simple computer-based tasks, including memory and recall, multi-tasking, and mood-mapping to gauge physical and mental performance. Three different aromatic environments were then introduced through diffusion and indirect inhalation near the participants' task space: 1) a control (no smell), 2) an odor (simulated dirty feet), and 3) an aroma (one of four true essential oils plus a current odor-eliminating compound used in many U.S. Emergency Departments). This study was meant to produce a stressful environment by leading the caregiver to stay in constant movement throughout the study through timed tasks, uncooperative equipment, and a needy "patient". The goal of this research was to determine if smells, and of what form of pleasantness and repulsiveness, can have an effect on the physical and mental performance of emergency caregivers. Findings from this study indicated that the "odor eliminating" method currently used in typical Emergency Departments, coffee grounds, is more problematic than helpful, and the introduction of true essential oils may not only reduce stress, but increase efficiency and, in turn, job satisfaction.
ContributorsClark, Carina M (Author) / Bernardi, Jose (Thesis advisor) / Heywood, William (Committee member) / Watts, Richard (Committee member) / Rosso, Rachel (Committee member) / Arizona State University (Publisher)
Created2013
151467-Thumbnail Image.png
Description
A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by ASU and Intel Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to broker information synchronously between the DEVS and LP

A semiconductor supply chain modeling and simulation platform using Linear Program (LP) optimization and parallel Discrete Event System Specification (DEVS) process models has been developed in a joint effort by ASU and Intel Corporation. A Knowledge Interchange Broker (KIBDEVS/LP) was developed to broker information synchronously between the DEVS and LP models. Recently a single-echelon heuristic Inventory Strategy Module (ISM) was added to correct for forecast bias in customer demand data using different smoothing techniques. The optimization model could then use information provided by the forecast model to make better decisions for the process model. The composition of ISM with LP and DEVS models resulted in the first realization of what is now called the Optimization Simulation Forecast (OSF) platform. It could handle a single echelon supply chain system consisting of single hubs and single products In this thesis, this single-echelon simulation platform is extended to handle multiple echelons with multiple inventory elements handling multiple products. The main aspect for the multi-echelon OSF platform was to extend the KIBDEVS/LP such that ISM interactions with the LP and DEVS models could also be supported. To achieve this, a new, scalable XML schema for the KIB has been developed. The XML schema has also resulted in strengthening the KIB execution engine design. A sequential scheme controls the executions of the DEVS-Suite simulator, CPLEX optimizer, and ISM engine. To use the ISM for multiple echelons, it is extended to compute forecast customer demands and safety stocks over multiple hubs and products. Basic examples for semiconductor manufacturing spanning single and two echelon supply chain systems have been developed and analyzed. Experiments using perfect data were conducted to show the correctness of the OSF platform design and implementation. Simple, but realistic experiments have also been conducted. They highlight the kinds of supply chain dynamics that can be evaluated using discrete event process simulation, linear programming optimization, and heuristics forecasting models.
ContributorsSmith, James Melkon (Author) / Sarjoughian, Hessam S. (Thesis advisor) / Davulcu, Hasan (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2012
151481-Thumbnail Image.png
Description
A growing body of research shows that characteristics of the built environment in healthcare facilities impact patients' well-being. Research findings suggest that patients form judgments of perceived quality care based on environmental characteristics. Patient outcomes and ratings of quality of care are linked to the environments' ability to reduce patient

A growing body of research shows that characteristics of the built environment in healthcare facilities impact patients' well-being. Research findings suggest that patients form judgments of perceived quality care based on environmental characteristics. Patient outcomes and ratings of quality of care are linked to the environments' ability to reduce patient stress as well as influence perceptions of quality of care. Historically, this research has been focused in the hospital environment. The United States healthcare system heavily relies on hospitals to treat (rather than prevent) illness, leading to a high per capita healthcare expenditure. Currently, this healthcare system is shifting to rely heavily on ambulatory care settings and primary care providers to detect, prevent, and manage expensive medical conditions. The highest rates of preventable disease and the lowest rates of primary care usage are found in the young adult population (ages 18 to 24). More than any other patient population, this segment rates their satisfaction with healthcare significantly low. For this population education, early detection, and monitoring will be key for a primary care focused model to have the greatest impact on care and long-term savings. Strong patient-physician connections ensure the success of a primary care focused model. The physical environment has the opportunity to provide a message consistent with a physician's practice values and goals. Environmental cues in the waiting area have the potential to relay these messages to the patient prior to physician contact. Through an understanding and optimization of these cues patient perception of quality of care may be increased, thus improving the patient-physician relationship. This study provides insight on how to optimize environmental impact on the healthcare experience. This descriptive exploratory study utilized a non-verbal self-report instrument to collect demographic information and measure participant's responses to two panoramic photos of primary care provider waiting areas. Respondents were asked to identify physical elements in the photos that contributed to their perceptions of the quality of care to be expected. The sample population consisted of 33, 18 to 24 year-olds leaving a total of 234 emotional markers and comments. Qualitative and quantitative revealed three key themes of appeal, comfort, and regard. Physical elements, in the photos, related to the themes include: General areas that were important to the respondents were the seating and reception areas, as well as the overall appearance of the waiting area. Key elements identified to be significant characteristics influencing perceptions of quality of care are presented in this study.
ContributorsBadura, Kerri (Author) / Lamb, Gerri (Thesis advisor) / Heywood, William (Committee member) / Wolf, Peter (Committee member) / Arizona State University (Publisher)
Created2012
151524-Thumbnail Image.png
Description
Process migration is a heavily studied research area and has a number of applications in distributed systems. Process migration means transferring a process running on one machine to another such that it resumes execution from the point at which it was suspended. The conventional approach to implement process migration is

Process migration is a heavily studied research area and has a number of applications in distributed systems. Process migration means transferring a process running on one machine to another such that it resumes execution from the point at which it was suspended. The conventional approach to implement process migration is to move the entire state information of the process (including hardware context, virtual memory, files etc.) from one machine to another. Copying all the state information is costly. This thesis proposes and demonstrates a new approach of migrating a process between two cores of Intel Single Chip Cloud (SCC), an experimental 48-core processor by Intel, with each core running a separate instance of the operating system. In this method the amount of process state to be transferred from one core's memory to another is reduced by making use of special registers called Lookup tables (LUTs) present on each core of SCC. Thus this new approach is faster than the conventional method.
ContributorsJain, Vaibhav (Author) / Dasgupta, Partha (Thesis advisor) / Shriavstava, Aviral (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013