This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 31 - 40 of 51
157033-Thumbnail Image.png
Description
In recent years, a new type of ionic salt based solid propellant, considered inert until the application of an electric current induces an electro-chemical reaction, has been under investigation due to its broad range of possible uses. However, while many electric propellant formulations and applications have been explored over the

In recent years, a new type of ionic salt based solid propellant, considered inert until the application of an electric current induces an electro-chemical reaction, has been under investigation due to its broad range of possible uses. However, while many electric propellant formulations and applications have been explored over the years, a fundamental understanding of the operational mechanisms of this propellant is necessary in order to move forward with development and implementation of this technology. It has been suggested that the metallic additive included in the formulation studied during this investigation may be playing an additional, currently unknown role in the operation and performance of the propellant. This study was designed to examine variations of an electric propellant formulation with the purpose of investigating propellant bulk volume electrical resistivity in order to attempt to determine information regarding the fundamental science behind the operation of this material. Within a set of fractional factorial experiments, variations of the propellant material made with tungsten, copper, carbon black, and no additive were manufactured using three different particle size ranges and three different volume percentage particle loadings. Each of these formulations (a total of 21 samples and 189 specimens) were tested for quantitative electrical resistivity values at three different pulse generator input voltage values. The data gathered from these experiments suggests that this electric propellant formulation’s resistivity value does change based upon the included additive. The resulting data has also revealed a parabolic response behavior noticeable in the 2D and 3D additive loading percentage versus additive particle size visualizations, the lowest point of which, occurring at an approximately 2.3% additive loading percentage value, could be indicative of the effects of the percolation phenomena on this material. Finally, the investigation results have been loosely correlated to power consumption testing results from previous work that may indicate that it is possible to relate propellant electrical resistivity and operating requirements. Throughout this study, however, it is obvious based on the data gathered that more information is required to be certain of these conclusions and in order to fully understand how this technology can be controlled for future use.
ContributorsBrunacini, Lauren (Author) / Middleton, James (Thesis advisor) / Dai, Lenore (Committee member) / Langhenry, Mark T (Committee member) / Arizona State University (Publisher)
Created2019
157078-Thumbnail Image.png
Description
A new type of electronics was envisioned, namely edible electronics. Edible electronics are made by Food and Drug Administration (FDA) certified edible materials which can be eaten and digested by human body. Different from implantable electronics, test or treatment using edible electronics doesn’t require operations and perioperative complications.

This dissertation

A new type of electronics was envisioned, namely edible electronics. Edible electronics are made by Food and Drug Administration (FDA) certified edible materials which can be eaten and digested by human body. Different from implantable electronics, test or treatment using edible electronics doesn’t require operations and perioperative complications.

This dissertation bridges the food industry, material sciences, device fabrication, and biomedical engineering by demonstrating edible supercapacitors and electronic components and devices such as pH sensor.

Edible supercapacitors were fabricated using food materials from grocery store. 5 of them were connected in series to power a snake camera. Tests result showed that the current generated by supercapacitor have the ability to kill bacteria. Next more food, processed food and non-toxic level electronic materials were investigated. A “preferred food kit” was created for component fabrication based on the investigation. Some edible electronic components, such as wires, resistor, inductor, etc., were developed and characterized utilizing the preferred food kit. These components make it possible to fabricate edible electronic/device in the future work. Some edible electronic components were integrated into an edible electronic system/device. Then edible pH sensor was introduced and fabricated. This edible pH sensor can be swallowed and test pH of gastric fluid. PH can be read in a phone within seconds after the pH sensor was swallowed. As a side project, an edible double network gel electrolyte was synthesized for the edible supercapacitor.
ContributorsXu, Wenwen (Author) / Jiang, Hanqing (Thesis advisor) / Dai, Lenore (Committee member) / Green, Matthew (Committee member) / Mu, Bin (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2019
136132-Thumbnail Image.png
Description
Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on

Calcium hydroxide carbonation processes were studied to investigate the potential for abiotic soil improvement. Different mixtures of common soil constituents such as sand, clay, and granite were mixed with a calcium hydroxide slurry and carbonated at approximately 860 psi. While the carbonation was successful and calcite formation was strong on sample exteriors, a 4 mm passivating boundary layer effect was observed, impeding the carbonation process at the center. XRD analysis was used to characterize the extent of carbonation, indicating extremely poor carbonation and therefore CO2 penetration inside the visible boundary. The depth of the passivating layer was found to be independent of both time and choice of aggregate. Less than adequate strength was developed in carbonated trials due to formation of small, weakly-connected crystals, shown with SEM analysis. Additional research, especially in situ analysis with thermogravimetric analysis would be useful to determine the causation of poor carbonation performance. This technology has great potential to substitute for certain Portland cement applications if these issues can be addressed.
ContributorsHermens, Stephen Edward (Author) / Bearat, Hamdallah (Thesis director) / Dai, Lenore (Committee member) / Mobasher, Barzin (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
136927-Thumbnail Image.png
Description
The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP

The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP mixtures as well as graphene/LFP mixtures and a synthesized graphene/LFP nanocomposite. Graphene synthesis was attempted before purchasing graphene materials, and further exploration of graphene synthesis is recommended due to limitations in purchased product quality. While it was determined after extensive experimentation that the graphene/LFP nanocomposite could not be successfully synthesized according to current literature information, a mixed composite of graphene/LFP was successfully tested and found to have k = 0.23 W/m*K. This result provides a starting point for further thermal testing method development and k optimization in Li-ion battery electrode nanocomposites.
ContributorsStehlik, Daniel Wesley (Author) / Chan, Candace K. (Thesis director) / Dai, Lenore (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
134918-Thumbnail Image.png
Description
Statistical process control (SPC) is an important quality application that is used throughout industry and is composed of control charts. Most often, it is applied in the final stages of product manufacturing. However it would be beneficial to apply SPC throughout all stages of the manufacturing process such as the

Statistical process control (SPC) is an important quality application that is used throughout industry and is composed of control charts. Most often, it is applied in the final stages of product manufacturing. However it would be beneficial to apply SPC throughout all stages of the manufacturing process such as the beginning stages. This report explores the fundamentals of SPC, applicable programs, important aspects of implementation, and specific examples of where SPC was beneficial. Important programs for SPC are general statistical software such as JMP and Minitab, and some programs are made specifically for SPC such as SPACE: statistical process and control environment. Advanced programs like SPACE are beneficial because they can easily assist with creating control charts and setting up rules, alarms and notifications, and reaction mechanisms. After the charts are set up it is important to apply rules to the charts to see when a system is running off target which indicates the need to troubleshoot and investigate. This makes the notification part an integral aspect as well because attention and awareness must be brought to out of control situations. The next important aspect is ensuring there is a reaction mechanism or plan on what to do in the event of an out of control situation and what to do to get the system running back on target. Setting up an SPC system takes time and practice and requires a lot of collaboration with experts who know more about the system or the quality side. Some of the more difficult parts of implementation is getting everyone on board and creating trainings and getting the appropriate personnel trained.
ContributorsSennavongsa, Christy (Author) / Raupp, Gregory (Thesis director) / Dai, Lenore (Committee member) / Materials Science and Engineering Program (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154524-Thumbnail Image.png
Description
This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first

This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first time, the renewable production of benzaldehyde and benzyl alcohol has been achieved in recombinant E. coli with a maximum titer of 114 mg/L of benzyl alcohol. Further strain development to knockout endogenous alcohol dehydrogenase has reduced the in vivo degradation of benzaldehyde by 9-fold, representing an improved host for the future production of benzaldehyde as a sole product. In addition, a novel alternative pathway for the production of protocatechuate (PCA) and catechol from the endogenous metabolite chorismate is demonstrated. Titers for PCA and catechol were achieved at 454 mg/L and 630 mg/L, respectively. To explore potential routes for improved aromatic product yields, an in silico model using elementary mode analysis was developed. From the model, stoichiometric optimums maximizing both product-to-substrate and biomass-to-substrate yields were discovered in a co-fed model using glycerol and D-xylose as the carbon substrates for the biosynthetic production of catechol. Overall, the work presented in this dissertation highlights contributions to the field of metabolic engineering through novel pathway design for the biosynthesis of industrially relevant aromatic fine chemicals and the use of in silico modelling to identify novel approaches to increasing aromatic product yields.
ContributorsPugh, Shawn (Author) / Nielsen, David (Thesis advisor) / Dai, Lenore (Committee member) / Torres, Cesar (Committee member) / Lind, Mary Laura (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
154531-Thumbnail Image.png
Description
The energy crisis in the past decades has greatly boosted the search for alternatives to traditional fossil foils, and solar energy stands out as an important candidate due to its cleanness and abundance. However, the relatively low conversion efficiency and energy density strongly hinder the utilization of solar energy in

The energy crisis in the past decades has greatly boosted the search for alternatives to traditional fossil foils, and solar energy stands out as an important candidate due to its cleanness and abundance. However, the relatively low conversion efficiency and energy density strongly hinder the utilization of solar energy in wider applications. This thesis focuses on employing metamaterials and metafilms to enhance the conversion efficiency of solar thermal, solar thermophotovoltaic (STPV) and photovoltaic systems.

A selective metamaterial solar absorber is designed in this thesis to maximize the absorbed solar energy and minimize heat dissipation through thermal radiation. The theoretically designed metamaterial solar absorber exhibits absorptance higher than 95% in the solar spectrum but shows emittance less than 4% in the IR regime. This metamaterial solar absorber is further experimentally fabricated and optically characterized. Moreover, a metafilm selective absorber with stability up to 600oC is introduced, which exhibits solar absorptance higher than 90% and IR emittance less than 10%.

Solar thermophotovoltaic energy conversion enhanced by metamaterial absorbers and emitters is theoretically investigated in this thesis. The STPV system employing selective metamaterial absorber and emitter is investigated in this work, showing its conversion efficiency between 8% and 10% with concentration factor varying between 20 and 200. This conversion efficiency is remarkably enhanced compared with the conversion efficiency for STPV system employing black surfaces (<2.5%).

Moreover, plasmonic light trapping in ultra-thin solar cells employing concave grating nanostructures is discussed in this thesis. The plasmonic light trapping inside an ultrathin GaAs layer in the film-coupled metamaterial structure is numerically demonstrated. By exciting plasmonic resonances inside this structure, the short-circuit current density for the film-coupled metamaterial solar cell is three times the short-circuit current for a free-standing GaAs layer.

The dissertation is concluded by discussing about the future work on selective solar thermal absorbers, STPV/TPV systems and light trapping structures. Possibilities to design and fabricate solar thermal absorber with better thermal stability will be discussed, the experimental work of TPV system will be conducted, and the light trapping in organic and perovskite solar cells will be looked into.
ContributorsWang, Hao (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Dai, Lenore (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2016
154538-Thumbnail Image.png
Description
Origami and Kirigami are two traditional art forms in the world. Origami, from

‘ori’ meaning folding, and ‘kami’ meaning paper is the art of paper folding. Kirigami, from ‘kiri’ meaning cutting, is the art of the combination of paper cutting and paper folding. In this dissertation, Origami and kirigami concepts were

Origami and Kirigami are two traditional art forms in the world. Origami, from

‘ori’ meaning folding, and ‘kami’ meaning paper is the art of paper folding. Kirigami, from ‘kiri’ meaning cutting, is the art of the combination of paper cutting and paper folding. In this dissertation, Origami and kirigami concepts were successively utilized in making stretchable lithium ion batteries and three-dimensional (3D) silicon structure which both provide excellent mechanical characteristics.
ContributorsSong, Zeming (Author) / Jiang, Hanqing (Thesis advisor) / Dai, Lenore (Committee member) / Yu, Hongbin (Committee member) / He, Ximin (Committee member) / Arizona State University (Publisher)
Created2016
155134-Thumbnail Image.png
Description
Water recovery from impaired sources, such as reclaimed wastewater, brackish groundwater, and ocean water, is imperative as freshwater resources are under great pressure. Complete reuse of urine wastewater is also necessary to sustain life on space exploration missions of greater than one year’s duration. Currently, the Water Recovery System (WRS)

Water recovery from impaired sources, such as reclaimed wastewater, brackish groundwater, and ocean water, is imperative as freshwater resources are under great pressure. Complete reuse of urine wastewater is also necessary to sustain life on space exploration missions of greater than one year’s duration. Currently, the Water Recovery System (WRS) used on the National Aeronautics and Space Administration (NASA) shuttles recovers only 70% of generated wastewater.1 Current osmotic processes show high capability to increase water recovery from wastewater. However, commercial reverse osmosis (RO) membranes rapidly degrade when exposed to pretreated urine-containing wastewater. Also, non-ionic small molecules substances (i.e., urea) are very poorly rejected by commercial RO membranes.

In this study, an innovative composite membrane that integrates water-selective molecular sieve particles into a liquid-barrier chemically resistant polymer film is synthetized. This plan manipulates distinctive aspects of the two materials used to create the membranes: (1) the innate permeation and selectivity of the molecular sieves, and (2) the decay-resistant, versatile, and mechanical strength of the liquid-barrier polymer support matrix.

To synthesize the membrane, Linde Type A (LTA) zeolite particles are anchored to the porous substrate, producing a single layer of zeolite particles capable of transporting water through the membrane. Thereafter, coating the chemically resistant latex polymer filled the space between zeolites. Finally, excess polymer was etched from the surface to expose the zeolites to the feed solution. The completed membranes were tested in reverse osmosis mode with deionized water, sodium chloride, and rhodamine solutions to determine the suitability for water recovery.

The main distinguishing characteristics of the new membrane design compared with current composite membrane include: (1) the use of an impermeable polymer broadens the range of chemical resistant polymers that can be used as the polymer matrix; (2) the use of zeolite particles with specific pore size insures the high rejection of the neutral molecules since water is transported through the zeolite rather than the polymer; (3) the use of latex dispersions, environmentally friendly water based-solutions, as the polymer matrix shares the qualities of low volatile organic compound, low cost, and non- toxicity.
ContributorsKhosravi, Afsaneh Khosravi (Author) / Lind, Mary Laura (Thesis advisor) / Dai, Lenore (Committee member) / Green, Matthew (Committee member) / Lin, Jerry (Committee member) / Seo, Don (Committee member) / Arizona State University (Publisher)
Created2016
155105-Thumbnail Image.png
Description
The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular

The instrumentational measurement of seismic motion is important for a wide range of research fields and applications, such as seismology, geology, physics, civil engineering and harsh environment exploration. This report presents series approaches to develop Micro-Electro-Mechanical System (MEMS) enhanced inertial motion sensors including accelerometers, seismometers and inclinometers based on Molecular Electronic Transducers (MET) techniques.

Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise floor, small size, absence of fragile mechanical moving parts and independence on the direction of sensitivity axis. By using MEMS techniques, a micro MET seismometer is developed with inter-electrode spacing close to 5 μm. The employment of MEMS improves the sensitivity of fabricated device to above 2500 V/(m/s2) under operating bias of 300 mV and input velocity of 8.4μm/s from 0.08Hz to 80Hz. The lowered hydrodynamic resistance by increasing the number of channels improves the self-noise to -135 dB equivalent to 18nG/√Hz (G=9.8m/s2) around 1.2 Hz.

Inspired by the advantages of combining MET and MEMS technologies on the development of seismometer, a feasibility study of development of a low frequency accelerometer utilizing MET technology with post-CMOS-compatible fabrication processes is performed. In the fabricated accelerometer, the complicated fabrication of mass-spring system in solid-state MEMS accelerometer is replaced with a much simpler post-CMOS-compatible process containing only deposition of a four-electrode MET structure on a planar substrate, and a liquid inertia mass of an electrolyte droplet. With a specific design of 3D printing based package and replace water based iodide solution by room temperature ionic liquid based electrolyte, the sensitivity relative to the ground motion can reach 103.69V/g, with the resolution of 5.25μG/√Hz at 1Hz.

By combining MET techniques and Zn-Cu electrochemical cell (Galvanic cell), this letter demonstrates a passive motion sensor powered by self-electrochemistry energy, named “Battery Accelerometer”. The experimental results indicated the peak sensitivity of battery accelerometer at its resonant frequency 18Hz is 10.4V/G with the resolution of 1.71μG without power consumption.
ContributorsLiang, Mengbing (Author) / Yu, Hongyu (Thesis advisor) / Dai, Lenore (Committee member) / Kozicki, Michael (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2016