This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 5 of 5
Filtering by

Clear all filters

153197-Thumbnail Image.png
Description
The production of nanomaterials has been increasing and so are their applications in various products, while the environmental impacts and human impacts of these nanomaterials are still in the process of being explored. In this thesis, a process for

producing nano-titanium dioxide (nano-TiO2) is studied and a case-study has been

The production of nanomaterials has been increasing and so are their applications in various products, while the environmental impacts and human impacts of these nanomaterials are still in the process of being explored. In this thesis, a process for

producing nano-titanium dioxide (nano-TiO2) is studied and a case-study has been conducted on comparative Life Cycle Assessment (LCA) of the application of these nano-TiO2 particles in the sunscreen lotion as a UV-blocker with the conventional organic chemical sunscreen lotion using GaBi software. Nano-TiO2 particles were identified in the sunscreen lotion using Transmission Electron Microscope suggesting the use of these particles in the lotion.

The LCA modeling includes the comparison of the environmental impacts of producing nano-TiO2 particles with that of conventional organic chemical UV-blockers (octocrylene and avobenzone). It also compares the environmental life cycle impacts of the two sunscreen lotions studied. TRACI 2.1 was used for the assessment of the impacts which were then normalized and weighted for the ranking of the impact categories.

Results indicate that nano-TiO2 had higher impacts on the environment than the conventional organic chemical UV-blockers (octocrylene and avobenzone). For the two sunscreen lotions studied, nano-TiO2 sunscreen variant had lower environmental life cycle impacts than its counterpart because of the other chemicals used in the formulation. In the organic chemical sunscreen variant the major impacts came from production of glycerine, ethanol, and avobenzone but in the nano-TiO2 sunscreen variant the major impacts came from the production of nano-TiO2 particles.

Analysis further signifies the trade-offs between few environmental impact categories, for example, the human toxicity impacts were more in the nano-TiO2 sunscreen variant, but the other environmental impact categories viz. fossil fuel depletion, global warming potential, eutrophication were less compared to the organic chemical sunscreen variant.
ContributorsThakur, Ankita (Author) / Dooley, Kevin (Thesis advisor) / Dai, Lenore (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2014
156531-Thumbnail Image.png
Description
Nanomaterials (NMs), implemented into a plethora of consumer products, are a potential new class of pollutants with unknown hazards to the environment. Exposure assessment is necessary for hazard assessment, life cycle analysis, and environmental monitoring. Current nanomaterial detection techniques on complex matrices are expensive and time intensive, requiring weeks of

Nanomaterials (NMs), implemented into a plethora of consumer products, are a potential new class of pollutants with unknown hazards to the environment. Exposure assessment is necessary for hazard assessment, life cycle analysis, and environmental monitoring. Current nanomaterial detection techniques on complex matrices are expensive and time intensive, requiring weeks of sample preparation and detection by specialized equipment, limiting the feasibility of large-scale monitoring of NMs. A need exists to develop a rapid pre-screening technique to detect, within minutes, nanomaterials in complex matrices. The goal of this dissertation is to develop a tiered process to detect and characterize nanomaterials in consumer products and environmental samples. The approach is accomplished through a two tier rapid screening process to screen likely presence/absence of elements present in common nanomaterials at environmentally relevant concentrations followed by a more intensive three tier characterization process, if nanomaterials are likely to occur. The focus is on SiO2 and TiO2 nanomaterials with additional work performed on hydroxyapatite (Ca5(PO4)3(OH)). The five step tiered process is as follows: 1) screen for elements in the sample by laser induced breakdown spectroscopy (LIBS) and X-ray fluorescence (XRF), 2) extract nanomaterials from the sample and screen for extracted elements by LIBS and XRF, 3) confirm presence and elemental composition of nanomaterials by transmission electron microscopy paired with energy dispersive X-ray spectroscopy, 4) quantify the elemental composition of the sample by inductively coupled plasma – mass spectrometry, and 5) identify mineral phase of crystalline material by X-ray diffraction. This dissertation found LIBS to be an accurate method to detect Si and Ti in food matrices (tier one approach) with strong agreement with the product label, detecting Si and Ti in 93% and 89% of the samples labeled as containing each material, respectively. In addition XRF identified Ti, Si, and Ca in 100% of food samples TEM-confirmed to contain Ti, Si, and Ca respectively. As a tier two approach, LIBS on the 0.2 micrometer filter identified nano silicon in 42% of samples confirmed by TEM to contain nano Si and 67% of TEM-confirmed samples to contain Ti. XRF identified Si, Ti, and Ca loaded on to a 0.1 µm filter and Ti in the surfactant rich phase of CPE of water and water with NOM.
ContributorsSchoepf, Jared (Author) / Westerhoff, Paul (Thesis advisor) / Dai, Lenore (Committee member) / Hristovski, Kiril (Committee member) / Herckes, Pierre (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2018
154524-Thumbnail Image.png
Description
This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first

This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first time, the renewable production of benzaldehyde and benzyl alcohol has been achieved in recombinant E. coli with a maximum titer of 114 mg/L of benzyl alcohol. Further strain development to knockout endogenous alcohol dehydrogenase has reduced the in vivo degradation of benzaldehyde by 9-fold, representing an improved host for the future production of benzaldehyde as a sole product. In addition, a novel alternative pathway for the production of protocatechuate (PCA) and catechol from the endogenous metabolite chorismate is demonstrated. Titers for PCA and catechol were achieved at 454 mg/L and 630 mg/L, respectively. To explore potential routes for improved aromatic product yields, an in silico model using elementary mode analysis was developed. From the model, stoichiometric optimums maximizing both product-to-substrate and biomass-to-substrate yields were discovered in a co-fed model using glycerol and D-xylose as the carbon substrates for the biosynthetic production of catechol. Overall, the work presented in this dissertation highlights contributions to the field of metabolic engineering through novel pathway design for the biosynthesis of industrially relevant aromatic fine chemicals and the use of in silico modelling to identify novel approaches to increasing aromatic product yields.
ContributorsPugh, Shawn (Author) / Nielsen, David (Thesis advisor) / Dai, Lenore (Committee member) / Torres, Cesar (Committee member) / Lind, Mary Laura (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
155134-Thumbnail Image.png
Description
Water recovery from impaired sources, such as reclaimed wastewater, brackish groundwater, and ocean water, is imperative as freshwater resources are under great pressure. Complete reuse of urine wastewater is also necessary to sustain life on space exploration missions of greater than one year’s duration. Currently, the Water Recovery System (WRS)

Water recovery from impaired sources, such as reclaimed wastewater, brackish groundwater, and ocean water, is imperative as freshwater resources are under great pressure. Complete reuse of urine wastewater is also necessary to sustain life on space exploration missions of greater than one year’s duration. Currently, the Water Recovery System (WRS) used on the National Aeronautics and Space Administration (NASA) shuttles recovers only 70% of generated wastewater.1 Current osmotic processes show high capability to increase water recovery from wastewater. However, commercial reverse osmosis (RO) membranes rapidly degrade when exposed to pretreated urine-containing wastewater. Also, non-ionic small molecules substances (i.e., urea) are very poorly rejected by commercial RO membranes.

In this study, an innovative composite membrane that integrates water-selective molecular sieve particles into a liquid-barrier chemically resistant polymer film is synthetized. This plan manipulates distinctive aspects of the two materials used to create the membranes: (1) the innate permeation and selectivity of the molecular sieves, and (2) the decay-resistant, versatile, and mechanical strength of the liquid-barrier polymer support matrix.

To synthesize the membrane, Linde Type A (LTA) zeolite particles are anchored to the porous substrate, producing a single layer of zeolite particles capable of transporting water through the membrane. Thereafter, coating the chemically resistant latex polymer filled the space between zeolites. Finally, excess polymer was etched from the surface to expose the zeolites to the feed solution. The completed membranes were tested in reverse osmosis mode with deionized water, sodium chloride, and rhodamine solutions to determine the suitability for water recovery.

The main distinguishing characteristics of the new membrane design compared with current composite membrane include: (1) the use of an impermeable polymer broadens the range of chemical resistant polymers that can be used as the polymer matrix; (2) the use of zeolite particles with specific pore size insures the high rejection of the neutral molecules since water is transported through the zeolite rather than the polymer; (3) the use of latex dispersions, environmentally friendly water based-solutions, as the polymer matrix shares the qualities of low volatile organic compound, low cost, and non- toxicity.
ContributorsKhosravi, Afsaneh Khosravi (Author) / Lind, Mary Laura (Thesis advisor) / Dai, Lenore (Committee member) / Green, Matthew (Committee member) / Lin, Jerry (Committee member) / Seo, Don (Committee member) / Arizona State University (Publisher)
Created2016
137633-Thumbnail Image.png
Description
This project is part of a larger project involving making membranes for the separation of potable water from urine solutions for applications in space travel. This project deals specifically with testing LTA nanozeolites that will be used in the membrane under a variety of acidic conditions, specifically in solutions of

This project is part of a larger project involving making membranes for the separation of potable water from urine solutions for applications in space travel. This project deals specifically with testing LTA nanozeolites that will be used in the membrane under a variety of acidic conditions, specifically in solutions of sulfuric acid, chromium trioxide, and potassium phosphate of pHs ranging from .5 to 5, in order to investigate the effects of pH, acid type, and time. They were analyzed using SEM, FTIR, and XRD, in order to analyze how much the zeolite was degraded under the conditions of each solution. It was determined that, for high pH values (4-5), potassium phosphate had the strongest effect, as it degraded the zeolite to the point of destroying the crystal structure completely. Because of the solubility limit of potassium phosphate in water, it could not be analyzed at low pH, so only sulfuric acid and chromium trioxide were analyzed at low pH (.5-3). They both had severe effects, sulfuric acid being slightly more severe, with both of them completely dissolving the zeolite at pH values of 1 and lower. Decreasing pH increased degradation for all of the acids, with pH values above 2 for sulfuric acid and chromium trioxide showing only minor degradation, and pH 5 potassium phosphate showing only minor degradation.
ContributorsWaller, Aaron Christopher (Author) / Lind, Mary Laura (Thesis director) / Dai, Lenore (Committee member) / Lin, Jerry (Committee member) / Barrett, The Honors College (Contributor)
Created2013-05