This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 99
151860-Thumbnail Image.png
Description
Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal

Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal in both men and women. Developing new drugs for the treatment of cancer is both a slow and expensive process. It is estimated that it takes an average of 15 years and an expense of $800 million to bring a single new drug to the market. However, it is also estimated that nearly 40% of that cost could be avoided by finding alternative uses for drugs that have already been approved by the Food and Drug Administration (FDA). The research presented in this document describes the testing, identification, and mechanistic evaluation of novel methods for treating many human carcinomas using drugs previously approved by the FDA. A tissue culture plate-based screening of FDA approved drugs will identify compounds that can be used in combination with the protein TRAIL to induce apoptosis selectively in cancer cells. Identified leads will next be optimized using high-throughput microfluidic devices to determine the most effective treatment conditions. Finally, a rigorous mechanistic analysis will be conducted to understand how the FDA-approved drug mitoxantrone, sensitizes cancer cells to TRAIL-mediated apoptosis.
ContributorsTaylor, David (Author) / Rege, Kaushal (Thesis advisor) / Jayaraman, Arul (Committee member) / Nielsen, David (Committee member) / Kodibagkar, Vikram (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2013
151785-Thumbnail Image.png
Description
This dissertation explores the role of smart home service provisions (SHSP) as motivational agents supporting goal attainment and human flourishing. Evoking human flourishing as a lens for interaction encapsulates issues of wellbeing, adaptation and problem solving within the context of social interaction. To investigate this line of research a new,

This dissertation explores the role of smart home service provisions (SHSP) as motivational agents supporting goal attainment and human flourishing. Evoking human flourishing as a lens for interaction encapsulates issues of wellbeing, adaptation and problem solving within the context of social interaction. To investigate this line of research a new, motivation-sensitive approach to design was implemented. This approach combined psychometric analysis from motivational psychology's Personal Project Analysis (PPA) and Place Attachment theory's Sense of Place (SoP) analysis to produce project-centered motivational models for environmental congruence. Regression analysis of surveys collected from 150 (n = 150) young adults about their homes revealed PPA motivational dimensions had significant main affects on all three SoP factors. Model one indicated PPA dimensions Fearful and Value Congruency predicted the SoP factor Place Attachment (p = 0.012). Model two indicated the PPA factor Positive Affect and PPA dimensions Value Congruency, Self Identity and Autonomy predicted Place Identity (p = .0003). Model three indicated PPA dimensions Difficulty and Likelihood of Success predicted the SoP factor Place Dependency. The relationships between motivational PPA dimensions and SoP demonstrated in these models informed creation of a set of motivational design heuristics. These heuristics guided 20 participants (n = 20) through co-design of paper prototypes of SHSPs supporting goal attainment and human flourishing. Normative analysis of these paper prototypes fashioned a design framework consisting of the use cases "make with me", "keep me on task" and "improve myself"; the four design principles "time and timing", "guidance and accountability", "project ambiguity" and "positivity mechanisms"; and the seven interaction models "structuring time", "prompt user", "gather resources", "consume content", "create content", "restrict and/or restore access to content" and "share content". This design framework described and evaluated three technology probes installed in the homes of three participants (n = 3) for field-testing over the course of one week. A priori and post priori samples of psychometric measures were inconclusive in determining if SHSP motivated goal attainment or increased environmental congruency between young adults and their homes.
ContributorsBrotman, Ryan Scott (Author) / Burleson, Winsow (Thesis advisor) / Heywood, William (Committee member) / Forlizzi, Jodi (Committee member) / Arizona State University (Publisher)
Created2013
151600-Thumbnail Image.png
Description
Research has shown that the ability to smell is the most direct sense an individual can experience. With every breath a person takes, the brain recognizes thousands of molecules and makes connections with our memories to determine their composition. With the amount of research looking into how and why we

Research has shown that the ability to smell is the most direct sense an individual can experience. With every breath a person takes, the brain recognizes thousands of molecules and makes connections with our memories to determine their composition. With the amount of research looking into how and why we smell, researchers still have little understanding of how the nose and brain process an aroma, and how emotional and physical behavior is impacted. This research focused on the affects smell has on a caregiver in a simulated Emergency Department setting located in the SimET of Banner Good Samaritan Medical Center in Phoenix, Arizona. The study asked each participant to care for a programmed mannequin, or "patient", while performing simple computer-based tasks, including memory and recall, multi-tasking, and mood-mapping to gauge physical and mental performance. Three different aromatic environments were then introduced through diffusion and indirect inhalation near the participants' task space: 1) a control (no smell), 2) an odor (simulated dirty feet), and 3) an aroma (one of four true essential oils plus a current odor-eliminating compound used in many U.S. Emergency Departments). This study was meant to produce a stressful environment by leading the caregiver to stay in constant movement throughout the study through timed tasks, uncooperative equipment, and a needy "patient". The goal of this research was to determine if smells, and of what form of pleasantness and repulsiveness, can have an effect on the physical and mental performance of emergency caregivers. Findings from this study indicated that the "odor eliminating" method currently used in typical Emergency Departments, coffee grounds, is more problematic than helpful, and the introduction of true essential oils may not only reduce stress, but increase efficiency and, in turn, job satisfaction.
ContributorsClark, Carina M (Author) / Bernardi, Jose (Thesis advisor) / Heywood, William (Committee member) / Watts, Richard (Committee member) / Rosso, Rachel (Committee member) / Arizona State University (Publisher)
Created2013
151455-Thumbnail Image.png
Description
Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving

Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focusses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.
ContributorsMoncada, Albert (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Yekani Fard, Masoud (Committee member) / Arizona State University (Publisher)
Created2012
151481-Thumbnail Image.png
Description
A growing body of research shows that characteristics of the built environment in healthcare facilities impact patients' well-being. Research findings suggest that patients form judgments of perceived quality care based on environmental characteristics. Patient outcomes and ratings of quality of care are linked to the environments' ability to reduce patient

A growing body of research shows that characteristics of the built environment in healthcare facilities impact patients' well-being. Research findings suggest that patients form judgments of perceived quality care based on environmental characteristics. Patient outcomes and ratings of quality of care are linked to the environments' ability to reduce patient stress as well as influence perceptions of quality of care. Historically, this research has been focused in the hospital environment. The United States healthcare system heavily relies on hospitals to treat (rather than prevent) illness, leading to a high per capita healthcare expenditure. Currently, this healthcare system is shifting to rely heavily on ambulatory care settings and primary care providers to detect, prevent, and manage expensive medical conditions. The highest rates of preventable disease and the lowest rates of primary care usage are found in the young adult population (ages 18 to 24). More than any other patient population, this segment rates their satisfaction with healthcare significantly low. For this population education, early detection, and monitoring will be key for a primary care focused model to have the greatest impact on care and long-term savings. Strong patient-physician connections ensure the success of a primary care focused model. The physical environment has the opportunity to provide a message consistent with a physician's practice values and goals. Environmental cues in the waiting area have the potential to relay these messages to the patient prior to physician contact. Through an understanding and optimization of these cues patient perception of quality of care may be increased, thus improving the patient-physician relationship. This study provides insight on how to optimize environmental impact on the healthcare experience. This descriptive exploratory study utilized a non-verbal self-report instrument to collect demographic information and measure participant's responses to two panoramic photos of primary care provider waiting areas. Respondents were asked to identify physical elements in the photos that contributed to their perceptions of the quality of care to be expected. The sample population consisted of 33, 18 to 24 year-olds leaving a total of 234 emotional markers and comments. Qualitative and quantitative revealed three key themes of appeal, comfort, and regard. Physical elements, in the photos, related to the themes include: General areas that were important to the respondents were the seating and reception areas, as well as the overall appearance of the waiting area. Key elements identified to be significant characteristics influencing perceptions of quality of care are presented in this study.
ContributorsBadura, Kerri (Author) / Lamb, Gerri (Thesis advisor) / Heywood, William (Committee member) / Wolf, Peter (Committee member) / Arizona State University (Publisher)
Created2012
152602-Thumbnail Image.png
Description
Generally speaking, many programs of interior design have had a gender imbalance in the student population. As a case in point, the interior design program at Arizona State University (ASU) is at present ninety percent female. While other design programs such as architecture or industrial design have achieved gender balance,

Generally speaking, many programs of interior design have had a gender imbalance in the student population. As a case in point, the interior design program at Arizona State University (ASU) is at present ninety percent female. While other design programs such as architecture or industrial design have achieved gender balance, interior design has not. This research explores the reasons why male students are not enrolling in the interior design program at ASU and to what degree gender influences the selection of a major. The objectives of this research are to determine: 1) what role gender plays in the selection of interior design as a choice of a major at ASU; 2) why might male students be hesitant to join the interior design program; 3) why female students are attracted to interior design; 4) if there are gender differences in design approach; and 5) if curricular differences between interior architecture and interior design impact the gender imbalance. A mixed method approach is used in order to answer the research questions including: a literature review, a visual ethnography, and interviews of interior design students and faculty members at ASU. The results reveal that gender might have an effect on students' decision to join the interior design program. For a male student, people questioned his sexuality because they assumed he would have to be of a certain sexual orientation to study interior design. According to a male faculty member upon visiting a middle school on career day, young boys would be interested in the projects displayed at the interior design booth until they figured out what it was. Even at a young age, the boys seemed to know that interior design was a female's domain. A participant stated that women seemed to be less critical of the men's projects and were more critical of each other. A male respondent stated that on the occasion there were no men in the class the studio culture changed. Another stated that interior design students did not take feedback as well as others and need to be affirmed more often. Gender socialization, the history of interior design as a feminine career, and the title "interior design" itself are all possible factors that could deter male students from joining the program. The insights acquired from this research will provide students and faculty members from The Design School and beyond a better understanding of gender socialization and what the interior design program has to offer.
ContributorsRuff, Charlene (Author) / Giard, Jacques (Thesis advisor) / Heywood, William (Committee member) / Margolis, Eric (Committee member) / Arizona State University (Publisher)
Created2014
152294-Thumbnail Image.png
Description
The study of lighting design has important implications for consumer behavior and is an important aspect of consideration for the retail industry. In today's global economy consumers can come from a number of cultural backgrounds. It is important to understand various cultures' perceptions of lighting design in order for retailers

The study of lighting design has important implications for consumer behavior and is an important aspect of consideration for the retail industry. In today's global economy consumers can come from a number of cultural backgrounds. It is important to understand various cultures' perceptions of lighting design in order for retailers to better understand how to use lighting as a benefit to provide consumers with a desirable shopping experience. This thesis provides insight into the effects of ambient lighting on product perception among Americans and Middle Easterners. Both cultural groups' possess significant purchasing power in the worldwide market place. This research will allow marketers, designers and consumers a better understanding of how culture may play a role in consumer perceptions and behavior Results of this study are based on data gathered from 164 surveys from individuals of American and Middle Eastern heritage. Follow up interviews were also conducted to examine the nuances of product perception and potential differences across cultures. This study, using qualitative and quantitative methods, was executed using a Sequential Explanatory Strategy. Survey data were analyzed to uncover significant correlations and relationships using measures of descriptive analysis, analysis of variance (ANOVA), and regression analysis. Interviews were analyzed using theme-based coding and reported in narrative form. The results suggest that lighting does in fact have an impact on product perception, however despite minor differences, this perception does not vary much between individuals from American and Middle Eastern cultures. It was found that lighting could affect price and quality perception with reference to store-image and store atmospherics. Additionally, lighting has a higher impact on subjective impressions of product (such as Freshness, Pleasantness, and Attractiveness), more than Price and Quality perceptions. This study suggests that particular lighting characteristics could be responsible for differences in product perception between these two cultures. This is important to note for lighting designers and marketers to create retail atmospheres that are preferable to both cultures.
ContributorsAlsharhan, Dalal Anwar (Author) / Kroelinger, Michael D. (Thesis advisor) / Eaton, John (Committee member) / Heywood, William (Committee member) / Arizona State University (Publisher)
Created2013
152157-Thumbnail Image.png
Description
The development of literacy abilities in young children has been a major concern for authorities and teachers in the USA for the last two decades. Significant effort has been devoted to ensure that preschool settings allow and motivate children to engage in literacy activities before entering kindergarten. Research has found

The development of literacy abilities in young children has been a major concern for authorities and teachers in the USA for the last two decades. Significant effort has been devoted to ensure that preschool settings allow and motivate children to engage in literacy activities before entering kindergarten. Research has found that a rich classroom environment in preschool settings enables teachers to encourage literacy interest in children at a young age. While a large amount of research has concentrated in testing the effect of prescriptive modifications in the classroom environment, few have focused on studying the design process and tools that teachers follow to design their classrooms. Public policy and research studies in the United States, mention the design of the classroom environment among teacher's responsibilities, but they do not include practical or methodological guides for them to use. The purpose of this research was to study the design process and tools that teachers use to design literacy rich classrooms in preschool settings. A case study was conducted at the ASU Mary Lou Fulton Teachers College Preschool at Arizona State University. This setting provides a unique opportunity for an exploratory study of this nature because it is a private child development laboratory with a flexible curriculum. Participant observation sessions and in depth semi-structured interviews were conducted to explore the design process used and experienced by the teachers. Findings revealed an iterative and cyclic design process that is repeated over time adjusting to the influence of numerous factors. Results also suggest that teacher's knowledge and beliefs highly influence the organization of their classrooms. Considering these factors as a standpoint allows for further exploration to determine a design process suitable for teachers when designing their learning environments. The use of a structured yet flexible design process, can be a potential tool for educators to design their classrooms, collaborate, document and transmit their knowledge. Although the findings correspond to a specific site studied, the implications are wide reaching as problems and opportunities expressed by the staff are common to other educational settings with similar characteristics.
ContributorsCortes, Catalina (Author) / Patel, Mookesh (Thesis advisor) / Heywood, William (Committee member) / Christie, James (Committee member) / Arizona State University (Publisher)
Created2013
152492-Thumbnail Image.png
Description
This thesis presents approaches to develop micro seismometers and accelerometers based on molecular electronic transducers (MET) technology using MicroElectroMechanical Systems (MEMS) techniques. MET is a technology applied in seismic instrumentation that proves highly beneficial to planetary seismology. It consists of an electrochemical cell that senses the movement of liquid electrolyte

This thesis presents approaches to develop micro seismometers and accelerometers based on molecular electronic transducers (MET) technology using MicroElectroMechanical Systems (MEMS) techniques. MET is a technology applied in seismic instrumentation that proves highly beneficial to planetary seismology. It consists of an electrochemical cell that senses the movement of liquid electrolyte between electrodes by converting it to the output current. MET seismometers have advantages of high sensitivity, low noise floor, small size, absence of fragile mechanical moving parts and independence on the direction of sensitivity axis. By using MEMS techniques, a micro MET seismometer is developed with inter-electrode spacing close to 1μm, which improves the sensitivity of fabricated device to above 3000 V/(m/s^2) under operating bias of 600 mV and input acceleration of 400 μG (G=9.81m/s^2) at 0.32 Hz. The lowered hydrodynamic resistance by increasing the number of channels improves the self-noise to -127 dB equivalent to 44 nG/√Hz at 1 Hz. An alternative approach to build the sensing element of MEMS MET seismometer using SOI process is also presented in this thesis. The significantly increased number of channels is expected to improve the noise performance. Inspired by the advantages of combining MET and MEMS technologies on the development of seismometer, a low frequency accelerometer utilizing MET technology with post-CMOS-compatible fabrication processes is developed. In the fabricated accelerometer, the complicated fabrication of mass-spring system in solid-state MEMS accelerometer is replaced with a much simpler post-CMOS-compatible process containing only deposition of a four-electrode MET structure on a planar substrate, and a liquid inertia mass of an electrolyte droplet encapsulated by oil film. The fabrication process does not involve focused ion beam milling which is used in the micro MET seismometer fabrication, thus the cost is lowered. Furthermore, the planar structure and the novel idea of using an oil film as the sealing diaphragm eliminate the complicated three-dimensional packaging of the seismometer. The fabricated device achieves 10.8 V/G sensitivity at 20 Hz with nearly flat response over the frequency range from 1 Hz to 50 Hz, and a low noise floor of 75 μG/√Hz at 20 Hz.
ContributorsHuang, Hai (Author) / Yu, Hongyu (Thesis advisor) / Jiang, Hanqing (Committee member) / Dai, Lenore (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2014
152504-Thumbnail Image.png
Description
Alzheimer's disease (AD) is the most common type of dementia, affecting one in nine people age 65 and older. One of the most important neuropathological characteristics of Alzheimer's disease is the aggregation and deposition of the protein beta-amyloid. Beta-amyloid is produced by proteolytic processing of the Amyloid Precursor Protein (APP).

Alzheimer's disease (AD) is the most common type of dementia, affecting one in nine people age 65 and older. One of the most important neuropathological characteristics of Alzheimer's disease is the aggregation and deposition of the protein beta-amyloid. Beta-amyloid is produced by proteolytic processing of the Amyloid Precursor Protein (APP). Production of beta-amyloid from APP is increased when cells are subject to stress since both APP and beta-secretase are upregulated by stress. An increased beta-amyloid level promotes aggregation of beta-amyloid into toxic species which cause an increase in reactive oxygen species (ROS) and a decrease in cell viability. Therefore reducing beta-amyloid generation is a promising method to control cell damage following stress. The goal of this thesis was to test the effect of inhibiting beta-amyloid production inside stressed AD cell model. Hydrogen peroxide was used as stressing agent. Two treatments were used to inhibit beta-amyloid production, including iBSec1, an scFv designed to block beta-secretase site of APP, and DIA10D, a bispecific tandem scFv engineered to cleave alpha-secretase site of APP and block beta-secretase site of APP. iBSec1 treatment was added extracellularly while DIA10D was stably expressed inside cell using PSECTAG vector. Increase in reactive oxygen species and decrease in cell viability were observed after addition of hydrogen peroxide to AD cell model. The increase in stress induced toxicity caused by addition of hydrogen peroxide was dramatically decreased by simultaneously treating the cells with iBSec1 or DIA10D to block the increase in beta-amyloid levels resulting from the upregulation of APP and beta-secretase.
ContributorsSuryadi, Vicky (Author) / Sierks, Michael (Thesis advisor) / Nielsen, David (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2014