This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

151655-Thumbnail Image.png
Description
There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that

There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that rats preferred and also ran faster for multiple pieces (30, 10 mg pellets) than an equicaloric, single piece of food (300 mg) showing that multiple pieces of food are more rewarding than a single piece. Chapter 2 Experiment 2 showed that rats preferred a 30-pellet food portion clustered together rather than scattered. Preference and motivation for clustered food pieces may be interpreted based on the optimal foraging theory that animals prefer foods that can maximize energy gain and minimize the risk of predation. Chapter 3 Experiment 1 showed that college students preferred and ate less of a multiple-piece than a single-piece portion and also ate less in a test meal following the multiple-piece than single-piece portion. Chapter 3 Experiment 2 replicated the results in Experiment 1 and used a bagel instead of chicken. Chapter 4 showed that college students given a five-piece chicken portion scattered on a plate ate less in a meal and in a subsequent test meal than those given the same portion clustered together. This is consistent with the hypothesis that multiple pieces of food may appear like more food because they take up a larger surface area than a single-piece portion. All together, these studies show that number and surface area occupied by food pieces are important visual cues determining food choice in animals and both food choice and intake in humans.
ContributorsBajaj, Devina (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
151216-Thumbnail Image.png
Description
The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters' also taste salt and sugar with greater intensity, as suggested

The unpleasant bitter taste found in many nutritious vegetables may deter people from consuming a healthy diet. We investigated individual differences in taste perception and whether these differences influence the effectiveness of bitterness masking. To test whether phenylthiocarbamide (PTC) `supertasters' also taste salt and sugar with greater intensity, as suggested by Bartoshuk and colleagues (2004), we infused strips of paper with salt water or sugar water. The bitterness rating of the PTC strip had a significant positive linear relationship with ratings of both the intensity of sweet and salt, but the effect sizes were very low, suggesting that the PTC strip does not give a complete picture of tasting ability. Next we investigated whether various seasonings could mask the bitter taste of vegetables and whether this varied with tasting ability. We found that sugar decreased bitterness and lemon decreased liking for vegetables of varying degrees of bitterness. The results did not differ by ability to taste any of the flavors. Therefore, even though there are remarkable individual differences in taste perception, sugar can be used to improve the initial palatability of vegetables and increase their acceptance and consumption.
ContributorsWilkie, Lynn Melissa (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2012
168618-Thumbnail Image.png
Description
Urinary tract infections (UTIs) disrupt military women’s service obligations and health. Females are more susceptible to UTIs due to their unique anatomical features and hormone fluctuations affecting vaginal flora. During phase 1 of the menstrual cycle (onset of bleeding, menstrual cycle days 1-5), estrogen levels significantly decrease and inhibit the

Urinary tract infections (UTIs) disrupt military women’s service obligations and health. Females are more susceptible to UTIs due to their unique anatomical features and hormone fluctuations affecting vaginal flora. During phase 1 of the menstrual cycle (onset of bleeding, menstrual cycle days 1-5), estrogen levels significantly decrease and inhibit the growth of lactobacilli, good bacteria that are essential in warding off harmful bacteria and infections, particularly pathogens of UTIs. To reduce UTI onset, it is recommended to frequently urinate with sufficient urine void volume to facilitate washing out harmful bacteria from the bladder and urethra. While menstruating, increased fluid consumption to support urination frequency and void volume may be critical, as the urethra and urinary tract are more predisposed to pathogenic bacteria found. Yet, there is a lack of research investigating the impact of hydration on urinary tract health during menstruation. The study sought to examine the effects of increased water fluid intake on the uropathogenic bacterial activity of underhydrated menstruating premenopausal females. Thirteen females underwent a 2x2 randomized crossover trial to evaluate the effectiveness of a) additional 1.89 L of water fluid intake and b) maintain habitual fluid intake on two subsequent phase 1 menses. At each phase 1 menses, fluid intake was gathered on days 2 and 5 to determine the fluid amount consumed. First-morning urinations on days 3 and 6 assessed urogenital bacterial activity. Combining data collection days 2 and 5 per intervention (INT) and control (CON), the mean±SD for total fluid intake was INT 2.99±1.05 and CON 1.85±0.89, resulting in a 62% increase, p< 0.001, η2= 0.459. For days 2 and 5, a 48% and 80% increase in total fluid in from CON to INT was found, ps< 0.01. However, only four cultures detected uropathogenic bacteria from four participants, with no patterns between conditions or days, making it difficult to determine the effectiveness of the intervention. Though the intervention results were undetermined, military women’s hydration, menstruation, and urinary tract health remain prominent health concerns. Efforts to assess their fluid consumption and urination behaviors during menstruation and UTI risks are warranted.
ContributorsVento, Kaila Ann (Author) / Wardenaar, Floris C (Thesis advisor) / Johnston, Carol (Committee member) / Kavouras, Stavros (Committee member) / Koskan, Alexis (Committee member) / Lynch, Heidi (Committee member) / Arizona State University (Publisher)
Created2022
152889-Thumbnail Image.png
Description
The unpleasant bitter taste found in many nutritious vegetables may deter their consumption. While bitterness suppression by prototypical tastants is well-studied in the chemical and pharmacological fields, mechanisms to reduce the bitterness of foods such as vegetables remain to be elucidated. Here tastants representing the taste primaries of

The unpleasant bitter taste found in many nutritious vegetables may deter their consumption. While bitterness suppression by prototypical tastants is well-studied in the chemical and pharmacological fields, mechanisms to reduce the bitterness of foods such as vegetables remain to be elucidated. Here tastants representing the taste primaries of salty and sweet were investigated as potential bitterness suppressors of three types of Brassicaceae vegetables. The secondary aim of these studies was to determine whether the bitter masking agents were differentially effective for bitter-sensitive and bitter-insensitive individuals. In all experiments, participants rated vegetables plain and with the addition of tastants. In Experiments 1-3, sucrose and NNS suppressed the bitterness of broccoli, Brussels sprouts, and cauliflower, whereas NaCl did not. Varying concentrations of NaCl and sucrose were introduced in Experiment 4 to assess the dose-dependency of the effects. While sucrose was a robust bitterness suppressor, NaCl suppressed bitterness only for participants who perceived the plain Brussels sprouts as highly bitter. Experiment 5, through the implementation of a rigorous control condition, determined that some but not all of this effect can be accounted for by regression to the mean. Individual variability in taste perception as determined by sampling of aqueous bitter, salty, and sweet solutions did not influence the degree of suppression by NaCl or sucrose. Consumption of vegetables is deterred by their bitter taste. Utilizing tastants to mask bitterness, a technique that preserves endogenous nutrients, can circumvent this issue. Sucrose is a robust bitter suppressor whereas the efficacy of NaCl is dependent upon bitterness perception of the plain vegetables.
ContributorsWilkie, Lynn Melissa (Author) / Capaldi Phillips, Elizabeth D (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2014