This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

154124-Thumbnail Image.png
Description
The objective of this research is to develop robust, accurate, and adaptive algorithms in the framework of the extended finite element method (XFEM) for fracture analysis of highly heterogeneous materials with complex internal geometries. A key contribution of this work is the creation of novel methods designed to automate the

The objective of this research is to develop robust, accurate, and adaptive algorithms in the framework of the extended finite element method (XFEM) for fracture analysis of highly heterogeneous materials with complex internal geometries. A key contribution of this work is the creation of novel methods designed to automate the incorporation of high-resolution data, e.g. from X-ray tomography, that can be used to better interpret the enormous volume of data generated in modern in-situ experimental testing. Thus new algorithms were developed for automating analysis of complex microstructures characterized by segmented tomographic images.

A centrality-based geometry segmentation algorithm was developed to accurately identify discrete inclusions and particles in composite materials where limitations in imaging resolution leads to spurious connections between particles in close contact.To allow for this algorithm to successfully segment geometry independently of particle size and shape, a relative centrality metric was defined to allow for a threshold centrality criterion for removal of voxels that spuriously connect distinct geometries.

To automate incorporation of microstructural information from high-resolution images, two methods were developed that initialize signed distance fields on adaptively-refined finite element meshes. The first method utilizes a level set evolution equation that is directly solved on the finite element mesh through Galerkins method. The evolution equation is formulated to produce a signed distance field that matches geometry defined by a set of voxels segmented from tomographic images. The method achieves optimal convergence for the order of elements used. In a second approach, the fast marching method is employed to initialize a distance field on a uniform grid which is then projected by least squares onto a finite element mesh. This latter approach is shown to be superior in speed and accuracy.

Lastly, extended finite element method simulations are performed for the analysis of particle fracture in metal matrix composites with realistic particle geometries initialized from X-ray tomographic data. In the simulations, particles fracture probabilistically through a Weibull strength distribution. The model is verified through comparisons with the experimentally-measured stress-strain response of the material as well as analysis of the fracture. Further, simulations are then performed to analyze the effect of mesh sensitivity, the effect of fracture of particles on their neighbors, and the role of a particles shape on its fracture probability.
ContributorsYuan, Rui (Author) / Oswald, Jay (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Liu, Yongming (Committee member) / Solanki, Kiran (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2015
153941-Thumbnail Image.png
Description
Hydrogen embrittlement (HE) is a phenomenon that affects both the physical and chemical properties of several intrinsically ductile metals. Consequently, understanding the mechanisms behind HE has been of particular interest in both experimental and modeling research. Discrepancies between experimental observations and modeling results have led to various proposals for HE

Hydrogen embrittlement (HE) is a phenomenon that affects both the physical and chemical properties of several intrinsically ductile metals. Consequently, understanding the mechanisms behind HE has been of particular interest in both experimental and modeling research. Discrepancies between experimental observations and modeling results have led to various proposals for HE mechanisms. Therefore, to gain insights into HE mechanisms in iron, this dissertation aims to investigate several key issues involving HE such as: a) the incipient crack tip events; b) the cohesive strength of grain boundaries (GBs); c) the dislocation-GB interactions and d) the dislocation mobility.

The crack tip, which presents a preferential trap site for hydrogen segregation, was examined using atomistic methods and the continuum based Rice-Thompson criterion as sufficient concentration of hydrogen can alter the crack tip deformation mechanism. Results suggest that there is a plausible co-existence of the adsorption induced dislocation emission and hydrogen enhanced decohesion mechanisms. In the case of GB-hydrogen interaction, we observed that the segregation of hydrogen along the interface leads to a reduction in cohesive strength resulting in intergranular failure. A methodology was further developed to quantify the role of the GB structure on this behavior.

GBs play a fundamental role in determining the strengthening mechanisms acting as an impediment to the dislocation motion; however, the presence of an unsurmountable barrier for a dislocation can generate slip localization that could further lead to intergranular crack initiation. It was found that the presence of hydrogen increases the strain energy stored within the GB which could lead to a transition in failure mode. Finally, in the case of body centered cubic metals, understanding the complex screw dislocation motion is critical to the development of an accurate continuum description of the plastic behavior. Further, the presence of hydrogen has been shown to drastically alter the plastic deformation, but the precise role of hydrogen is still unclear. Thus, the role of hydrogen on the dislocation mobility was examined using density functional theory and atomistic simulations. Overall, this dissertation provides a novel atomic-scale understanding of the HE mechanism and development of multiscale tools for future endeavors.
ContributorsAdlakha, Ilaksh (Author) / Solanki, Kiran (Thesis advisor) / Mignolet, Marc (Committee member) / Chawla, Nikhilesh (Committee member) / Jiang, Hanqing (Committee member) / Liu, Yongming (Committee member) / Arizona State University (Publisher)
Created2015
155229-Thumbnail Image.png
Description
An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for quantitative structure-property relations establishment and its performance prediction and optimization. X-ray tomography has provided a non-destructive means for microstructure characterization in both 3D and 4D (i.e., structural evolution over time). Traditional reconstruction algorithms like filtered-back-projection (FBP)

An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for quantitative structure-property relations establishment and its performance prediction and optimization. X-ray tomography has provided a non-destructive means for microstructure characterization in both 3D and 4D (i.e., structural evolution over time). Traditional reconstruction algorithms like filtered-back-projection (FBP) method or algebraic reconstruction techniques (ART) require huge number of tomographic projections and segmentation process before conducting microstructural quantification. This can be quite time consuming and computationally intensive.

In this thesis, a novel procedure is first presented that allows one to directly extract key structural information in forms of spatial correlation functions from limited x-ray tomography data. The key component of the procedure is the computation of a “probability map”, which provides the probability of an arbitrary point in the material system belonging to specific phase. The correlation functions of interest are then readily computed from the probability map. Using effective medium theory, accurate predictions of physical properties (e.g., elastic moduli) can be obtained.

Secondly, a stochastic optimization procedure that enables one to accurately reconstruct material microstructure from a small number of x-ray tomographic projections (e.g., 20 - 40) is presented. Moreover, a stochastic procedure for multi-modal data fusion is proposed, where both X-ray projections and correlation functions computed from limited 2D optical images are fused to accurately reconstruct complex heterogeneous materials in 3D. This multi-modal reconstruction algorithm is proved to be able to integrate the complementary data to perform an excellent optimization procedure, which indicates its high efficiency in using limited structural information.

Finally, the accuracy of the stochastic reconstruction procedure using limited X-ray projection data is ascertained by analyzing the microstructural degeneracy and the roughness of energy landscape associated with different number of projections. Ground-state degeneracy of a microstructure is found to decrease with increasing number of projections, which indicates a higher probability that the reconstructed configurations match the actual microstructure. The roughness of energy landscape can also provide information about the complexity and convergence behavior of the reconstruction for given microstructures and projection number.
ContributorsLi, Hechao (Author) / Jiao, Yang (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Liu, Yongming (Committee member) / Ren, Yi (Committee member) / Mu, Bin (Committee member) / Arizona State University (Publisher)
Created2017
158717-Thumbnail Image.png
Description
Semantic image segmentation has been a key topic in applications involving image processing and computer vision. Owing to the success and continuous research in the field of deep learning, there have been plenty of deep learning-based segmentation architectures that have been designed for various tasks. In this thesis, deep-learning architectures

Semantic image segmentation has been a key topic in applications involving image processing and computer vision. Owing to the success and continuous research in the field of deep learning, there have been plenty of deep learning-based segmentation architectures that have been designed for various tasks. In this thesis, deep-learning architectures for a specific application in material science; namely the segmentation process for the non-destructive study of the microstructure of Aluminum Alloy AA 7075 have been developed. This process requires the use of various imaging tools and methodologies to obtain the ground-truth information. The image dataset obtained using Transmission X-ray microscopy (TXM) consists of raw 2D image specimens captured from the projections at every beam scan. The segmented 2D ground-truth images are obtained by applying reconstruction and filtering algorithms before using a scientific visualization tool for segmentation. These images represent the corrosive behavior caused by the precipitates and inclusions particles on the Aluminum AA 7075 alloy. The study of the tools that work best for X-ray microscopy-based imaging is still in its early stages.

In this thesis, the underlying concepts behind Convolutional Neural Networks (CNNs) and state-of-the-art Semantic Segmentation architectures have been discussed in detail. The data generation and pre-processing process applied to the AA 7075 Data have also been described, along with the experimentation methodologies performed on the baseline and four other state-of-the-art Segmentation architectures that predict the segmented boundaries from the raw 2D images. A performance analysis based on various factors to decide the best techniques and tools to apply Semantic image segmentation for X-ray microscopy-based imaging was also conducted.
ContributorsBarboza, Daniel (Author) / Turaga, Pavan (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2020