This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171940-Thumbnail Image.png
Description
In the standard pipeline for machine learning model development, several design decisions are made largely based on trial and error. Take the classification problem as an example. The starting point for classifier design is a dataset with samples from the classes of interest. From this, the algorithm developer must decide

In the standard pipeline for machine learning model development, several design decisions are made largely based on trial and error. Take the classification problem as an example. The starting point for classifier design is a dataset with samples from the classes of interest. From this, the algorithm developer must decide which features to extract, which hypothesis class to condition on, which hyperparameters to select, and how to train the model. The design process is iterative with the developer trying different classifiers, feature sets, and hyper-parameters and using cross-validation to pick the model with the lowest error. As there are no guidelines for when to stop searching, developers can continue "optimizing" the model to the point where they begin to "fit to the dataset". These problems are amplified in the active learning setting, where the initial dataset may be unlabeled and label acquisition is costly. The aim in this dissertation is to develop algorithms that provide ML developers with additional information about the complexity of the underlying problem to guide downstream model development. I introduce the concept of "meta-features" - features extracted from a dataset that characterize the complexity of the underlying data generating process. In the context of classification, the complexity of the problem can be characterized by understanding two complementary meta-features: (a) the amount of overlap between classes, and (b) the geometry/topology of the decision boundary. Across three complementary works, I present a series of estimators for the meta-features that characterize overlap and geometry/topology of the decision boundary, and demonstrate how they can be used in algorithm development.
ContributorsLi, Weizhi (Author) / Berisha, Visar (Thesis advisor) / Dasarathy, Gautam (Thesis advisor) / Natesan Ramamurthy, Karthikeyan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2022
158717-Thumbnail Image.png
Description
Semantic image segmentation has been a key topic in applications involving image processing and computer vision. Owing to the success and continuous research in the field of deep learning, there have been plenty of deep learning-based segmentation architectures that have been designed for various tasks. In this thesis, deep-learning architectures

Semantic image segmentation has been a key topic in applications involving image processing and computer vision. Owing to the success and continuous research in the field of deep learning, there have been plenty of deep learning-based segmentation architectures that have been designed for various tasks. In this thesis, deep-learning architectures for a specific application in material science; namely the segmentation process for the non-destructive study of the microstructure of Aluminum Alloy AA 7075 have been developed. This process requires the use of various imaging tools and methodologies to obtain the ground-truth information. The image dataset obtained using Transmission X-ray microscopy (TXM) consists of raw 2D image specimens captured from the projections at every beam scan. The segmented 2D ground-truth images are obtained by applying reconstruction and filtering algorithms before using a scientific visualization tool for segmentation. These images represent the corrosive behavior caused by the precipitates and inclusions particles on the Aluminum AA 7075 alloy. The study of the tools that work best for X-ray microscopy-based imaging is still in its early stages.

In this thesis, the underlying concepts behind Convolutional Neural Networks (CNNs) and state-of-the-art Semantic Segmentation architectures have been discussed in detail. The data generation and pre-processing process applied to the AA 7075 Data have also been described, along with the experimentation methodologies performed on the baseline and four other state-of-the-art Segmentation architectures that predict the segmented boundaries from the raw 2D images. A performance analysis based on various factors to decide the best techniques and tools to apply Semantic image segmentation for X-ray microscopy-based imaging was also conducted.
ContributorsBarboza, Daniel (Author) / Turaga, Pavan (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2020