This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

158717-Thumbnail Image.png
Description
Semantic image segmentation has been a key topic in applications involving image processing and computer vision. Owing to the success and continuous research in the field of deep learning, there have been plenty of deep learning-based segmentation architectures that have been designed for various tasks. In this thesis, deep-learning architectures

Semantic image segmentation has been a key topic in applications involving image processing and computer vision. Owing to the success and continuous research in the field of deep learning, there have been plenty of deep learning-based segmentation architectures that have been designed for various tasks. In this thesis, deep-learning architectures for a specific application in material science; namely the segmentation process for the non-destructive study of the microstructure of Aluminum Alloy AA 7075 have been developed. This process requires the use of various imaging tools and methodologies to obtain the ground-truth information. The image dataset obtained using Transmission X-ray microscopy (TXM) consists of raw 2D image specimens captured from the projections at every beam scan. The segmented 2D ground-truth images are obtained by applying reconstruction and filtering algorithms before using a scientific visualization tool for segmentation. These images represent the corrosive behavior caused by the precipitates and inclusions particles on the Aluminum AA 7075 alloy. The study of the tools that work best for X-ray microscopy-based imaging is still in its early stages.

In this thesis, the underlying concepts behind Convolutional Neural Networks (CNNs) and state-of-the-art Semantic Segmentation architectures have been discussed in detail. The data generation and pre-processing process applied to the AA 7075 Data have also been described, along with the experimentation methodologies performed on the baseline and four other state-of-the-art Segmentation architectures that predict the segmented boundaries from the raw 2D images. A performance analysis based on various factors to decide the best techniques and tools to apply Semantic image segmentation for X-ray microscopy-based imaging was also conducted.
ContributorsBarboza, Daniel (Author) / Turaga, Pavan (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2020
161804-Thumbnail Image.png
Description
The field of Computer Vision has seen great accomplishments in the last decade due to the advancements in Deep Learning. With the advent of Convolutional Neural Networks, the task of image classification has achieved unimaginable success when perceived through the traditional Computer Vision lens. With that being said, the

The field of Computer Vision has seen great accomplishments in the last decade due to the advancements in Deep Learning. With the advent of Convolutional Neural Networks, the task of image classification has achieved unimaginable success when perceived through the traditional Computer Vision lens. With that being said, the state-of-the-art results in the image classification task were produced under a closed set assumption i.e. the input samples and the target datasets have knowledge of class labels in the testing phase. When any real-world scenario is considered, the model encounters unknown instances in the data. The task of identifying these unknown instances is called Open-Set Classification. This dissertation talks about the detection of unknown classes and the classification of the known classes. The problem is approached by using a neural network architecture called Deep Hierarchical Reconstruction Nets (DHRNets). It is dealt with by leveraging the reconstruction part of the DHRNets to identify the known class labels from the data. Experiments were also conducted on Convolutional Neural Networks (CNN) on the basis of softmax probability, Autoencoders on the basis of reconstruction loss, and Mahalanobis distance on CNN's to approach this problem.
ContributorsAinala, Kalyan (Author) / Turaga, Pavan (Thesis advisor) / Moraffah, Bahman (Committee member) / Demakethepalli Venkateswara, Hemanth Kumar (Committee member) / Arizona State University (Publisher)
Created2021