This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 1 of 1
Filtering by

Clear all filters

Description

The cocktail party effect describes the brain’s natural ability to attend to a specific voice or audio source in a crowded room. Researchers have recently attempted to recreate this ability in hearing aid design using brain signals from invasive electrocorticography electrodes. The present study aims to find neural signatures of

The cocktail party effect describes the brain’s natural ability to attend to a specific voice or audio source in a crowded room. Researchers have recently attempted to recreate this ability in hearing aid design using brain signals from invasive electrocorticography electrodes. The present study aims to find neural signatures of auditory attention to achieve this same goal with noninvasive electroencephalographic (EEG) methods. Five human participants participated in an auditory attention task. Participants listened to a series of four syllables followed by a fifth syllable (probe syllable). Participants were instructed to indicate whether or not the probe syllable was one of the four syllables played immediately before the probe syllable. Trials of this task were separated into conditions of playing the syllables in silence (Signal) and in background noise (Signal With Noise), and both behavioral and EEG data were recorded. EEG signals were analyzed with event-related potential and time-frequency analysis methods. The behavioral data indicated that participants performed better on the task during the “Signal” condition, which aligns with the challenges demonstrated in the cocktail party effect. The EEG analysis showed that the alpha band’s (9-13 Hz) inter-trial coherence could potentially indicate characteristics of the attended speech signal. These preliminary results suggest that EEG time-frequency analysis has the potential to reveal the neural signatures of auditory attention, which may allow for the design of a noninvasive, EEG-based hearing aid.

ContributorsLaBine, Alyssa (Author) / Daliri, Ayoub (Thesis director) / Chao, Saraching (Committee member) / Barrett, The Honors College (Contributor) / College of Health Solutions (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05