This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

133906-Thumbnail Image.png
Description
Adenosine triphosphate (ATP) is the driving force of the human body which allows individuals to move freely. Metabolism is responsible for its creation, and research has indicated that with training, metabolism can be modified to respond more efficiently to aerobic stimulus. During an acute bout of exercise, cardiac output increases

Adenosine triphosphate (ATP) is the driving force of the human body which allows individuals to move freely. Metabolism is responsible for its creation, and research has indicated that with training, metabolism can be modified to respond more efficiently to aerobic stimulus. During an acute bout of exercise, cardiac output increases to maintain oxygen supply to the body. Oxidative muscle fibers contract to move the body for prolonged periods of time, creating oxidative stress which is managed by the mitochondria which produce the ATP that supplies the muscle fiber, and as the body returns to its resting state, oxygen continues to be consumed in order to return to steady state. Following endurance training, changes in cardiac output, muscle fiber types, mitochondria, substrate utilization, and oxygen consumption following exercise make adaptations to make metabolism more efficient. Resting heart rate decreases and stroke volume increases. Fast twitch muscle fibers shift into more oxidative fibers, sometimes through mitochondrial biogenesis, and more fat is able to be utilized during exercise. The excess postexercise oxygen consumption following exercise bouts is reduced, and return to steady state becomes quicker. In conclusion, endurance training optimizes metabolic response during acute bouts of aerobic exercise.
ContributorsWarner, Erin (Author) / Nolan, Nicole (Thesis director) / Cataldo, Donna (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137412-Thumbnail Image.png
Description
Training the bench press exercise on a traditional flat bench does not induce a level of instability as seen in sport movements and activities of daily living. Because of this, many new types of equipment have been created in an attempt to induce instability, such as the COR Bench. 15

Training the bench press exercise on a traditional flat bench does not induce a level of instability as seen in sport movements and activities of daily living. Because of this, many new types of equipment have been created in an attempt to induce instability, such as the COR Bench. 15 males and 7 females between the ages of 18 and 30 were recruited for the present study, which tested two forms of instability: using one dumbbell rather than two, and lifting on the COR bench compared to a flat bench. Thusly, EMG was used to measure muscle activity in four separate conditions of unilateral bench press movements: on a flat bench with one dumbbell, on a flat bench with two dumbbells, on the COR Bench with one dumbbell, and on the COR Bench with two dumbbells. Results indicated that lifting with one dumbbell compared to two dumbbells on the flat bench significantly increased muscle activity across all four muscles being analyzed (pectoralis major, p = .005; middle trapezius, p = .008; external obliques, p = .004; and internal obliques, p = .003), but lifting with one dumbbell compared to two dumbbells on the COR Bench only significantly increased muscle activity in the middle trapezius (p = .001), external obliques(p = . 032), and internal obliques (p = .001). The only muscle to exhibit a significant increase in muscle activity when going from one dumbbell on the flat bench to one dumbbell on the COR Bench was the middle trapezius (p = .010). These results imply that the COR Bench itself does not increase muscle activity as much as switching from two dumbbells to one dumbbell, regardless of the bench being used.
ContributorsPatterson, Jeffrey (Author) / Harper, Erin (Thesis director) / Broman, Tannah (Committee member) / Cataldo, Donna (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-12
137105-Thumbnail Image.png
Description
Although the sport and exercise of running has a great amount of benefits to anyone's health, there is a chance of injury that can occur. There are many variables that can contribute to running injury. However, because of the vast amount of footsteps a frequent runner takes during their average

Although the sport and exercise of running has a great amount of benefits to anyone's health, there is a chance of injury that can occur. There are many variables that can contribute to running injury. However, because of the vast amount of footsteps a frequent runner takes during their average run, foot strike pattern is a significant factor to be investigated in running injury research. This study hypothesized that due to biomechanical factors, runners that exhibited a rear foot striking pattern would display a greater incidence of chronic lower extremity injury in comparison to forefoot striking counterparts. This hypothesis would support previous studies conducted on the topic. Student-athletes in the Arizona State University- Men's and Women's Track & Field program, specifically those who compete in distance events, were given self reporting surveys to provide injury history and had their foot strike patterns analyzed through video recordings. The survey and analysis of foot strike patterns resulted in data that mostly followed the hypothesized pattern of mid-foot and forefoot striking runners displaying a lower average frequency of injury in comparison to rear foot strikers. The differences in these averages across all injury categories was found to be statistically significant. One category that displayed the most supportive results was in the average frequency of mild injury. This lead to the proposed idea that while foot strike patterns may not be the best predictor of moderate and severe injuries, they may play a greater role in the origin of mild injury. Such injuries can be the gateway to more serious injury (moderate and severe) that are more likely to have their cause in other sources such as genetics or body composition for example. This study did support the idea that foot strike pattern can be the main predictor in incidence of running injuries, but also displayed that it is one of many major factors that contribute to injuries in runners.
ContributorsBaker-Slama, Garrett Richard (Author) / Harper, Erin (Thesis director) / Cataldo, Donna (Committee member) / Wilson, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2014-05
137750-Thumbnail Image.png
Description
The purpose of this study was to analyze the effects of changing a saddle height to a scientifically recommended position on cycling economy for competitive cyclists. Participants completed one maximal effort graded exercise test and two sub-maximal 70% economy trials, one at the cyclist’s original saddle height and the second

The purpose of this study was to analyze the effects of changing a saddle height to a scientifically recommended position on cycling economy for competitive cyclists. Participants completed one maximal effort graded exercise test and two sub-maximal 70% economy trials, one at the cyclist’s original saddle height and the second at the saddle height corresponding with a knee flexion angle of 25° at full pedal extension. Due to experimental error and equipment failure heart rate became the main performance measure and cycling economy tests were conducted at an average of 84.4% of heart rate max. The results revealed no apparent differences in performance between the recommended and original saddle height. However, 2D analysis of dynamic knee angles revealed that at the 25° knee angle condition, knee angle increased by an average of 16.1% from the static position (average dynamic knee angle = 29.02±4.61°). Dynamic measures (32.59±4.88°) taken during the original angle tests were only slightly augmented compared to the static measure (31.5±2.18°). It is possible based on this trend that a difference in performance values was not present because the change between the original angle and the experimental angle was not substantial. Additionally these findings suggest that cyclists adjust to these acute changes in saddle height by altering other kinematic variables in an attempt to find a comfortable position and perform maximally.
ContributorsRiley, Daniel Jacob (Author) / Harper, Erin (Thesis director) / Cataldo, Donna (Committee member) / Aragon, Alexandra (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor) / Department of Psychology (Contributor)
Created2013-05