This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 92
152070-Thumbnail Image.png
Description
When surgical resection becomes necessary to alleviate a patient's epileptiform activity, that patient is monitored by video synchronized with electrocorticography (ECoG) to determine the type and location of seizure focus. This provides a unique opportunity for researchers to gather neurophysiological data with high temporal and spatial resolution; these data are

When surgical resection becomes necessary to alleviate a patient's epileptiform activity, that patient is monitored by video synchronized with electrocorticography (ECoG) to determine the type and location of seizure focus. This provides a unique opportunity for researchers to gather neurophysiological data with high temporal and spatial resolution; these data are assessed prior to surgical resection to ensure the preservation of the patient's quality of life, e.g. avoid the removal of brain tissue required for speech processing. Currently considered the "gold standard" for the mapping of cortex, electrical cortical stimulation (ECS) involves the systematic activation of pairs of electrodes to localize functionally specific brain regions. This method has distinct limitations, which often includes pain experienced by the patient. Even in the best cases, the technique suffers from subjective assessments on the parts of both patients and physicians, and high inter- and intra-observer variability. Recent advances have been made as researchers have reported the localization of language areas through several signal processing methodologies, all necessitating patient participation in a controlled experiment. The development of a quantification tool to localize speech areas in which a patient is engaged in an unconstrained interpersonal conversation would eliminate the dependence of biased patient and reviewer input, as well as unnecessary discomfort to the patient. Post-hoc ECoG data were gathered from five patients with intractable epilepsy while each was engaged in a conversation with family members or clinicians. After the data were separated into different speech conditions, the power of each was compared to baseline to determine statistically significant activated electrodes. The results of several analytical methods are presented here. The algorithms did not yield language-specific areas exclusively, as broad activation of statistically significant electrodes was apparent across cortical areas. For one patient, 15 adjacent contacts along superior temporal gyrus (STG) and posterior part of the temporal lobe were determined language-significant through a controlled experiment. The task involved a patient lying in bed listening to repeated words, and yielded statistically significant activations that aligned with those of clinical evaluation. The results of this study do not support the hypothesis that unconstrained conversation may be used to localize areas required for receptive and productive speech, yet suggests a simple listening task may be an adequate alternative to direct cortical stimulation.
ContributorsLingo VanGilder, Jennapher (Author) / Helms Tillery, Stephen I (Thesis advisor) / Wahnoun, Remy (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2013
Description
Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly

Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly to the brain, providing feedback about features of objects in contact with the prosthetic. To achieve this goal, multiple simultaneous streams of information will need to be encoded by ICMS in a manner that produces robust, reliable, and discriminable sensations. The first segment of this work focuses on the discriminability of sensations elicited by ICMS within somatosensory cortex. Stimulation on multiple single electrodes and near-simultaneous stimulation across multiple electrodes, driven by a multimodal tactile sensor, were both used in these experiments. A SynTouch BioTac sensor was moved across a flat surface in several directions, and a subset of the sensor's electrode impedance channels were used to drive multichannel ICMS in the somatosensory cortex of a non-human primate. The animal performed a behavioral task during this stimulation to indicate the discriminability of sensations evoked by the electrical stimulation. The animal's responses to ICMS were somewhat inconsistent across experimental sessions but indicated that discriminable sensations were evoked by both single and multichannel ICMS. The factors that affect the discriminability of stimulation-induced sensations are not well understood, in part because the relationship between ICMS and the neural activity it induces is poorly defined. The second component of this work was to develop computational models that describe the populations of neurons likely to be activated by ICMS. Models of several neurons were constructed, and their responses to ICMS were calculated. A three-dimensional cortical model was constructed using these cell models and used to identify the populations of neurons likely to be recruited by ICMS. Stimulation activated neurons in a sparse and discontinuous fashion; additionally, the type, number, and location of neurons likely to be activated by stimulation varied with electrode depth.
ContributorsOverstreet, Cynthia K (Author) / Helms Tillery, Stephen I (Thesis advisor) / Santos, Veronica (Committee member) / Buneo, Christopher (Committee member) / Otto, Kevin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013
152011-Thumbnail Image.png
Description
Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions

Humans' ability to perform fine object and tool manipulation is a defining feature of their sensorimotor repertoire. How the central nervous system builds and maintains internal representations of such skilled hand-object interactions has attracted significant attention over the past three decades. Nevertheless, two major gaps exist: a) how digit positions and forces are coordinated during natural manipulation tasks, and b) what mechanisms underlie the formation and retention of internal representations of dexterous manipulation. This dissertation addresses these two questions through five experiments that are based on novel grip devices and experimental protocols. It was found that high-level representation of manipulation tasks can be learned in an effector-independent fashion. Specifically, when challenged by trial-to-trial variability in finger positions or using digits that were not previously engaged in learning the task, subjects could adjust finger forces to compensate for this variability, thus leading to consistent task performance. The results from a follow-up experiment conducted in a virtual reality environment indicate that haptic feedback is sufficient to implement the above coordination between digit position and forces. However, it was also found that the generalizability of a learned manipulation is limited across tasks. Specifically, when subjects learned to manipulate the same object across different contexts that require different motor output, interference was found at the time of switching contexts. Data from additional studies provide evidence for parallel learning processes, which are characterized by different rates of decay and learning. These experiments have provided important insight into the neural mechanisms underlying learning and control of object manipulation. The present findings have potential biomedical applications including brain-machine interfaces, rehabilitation of hand function, and prosthetics.
ContributorsFu, Qiushi (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Santos, Veronica (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2013
151285-Thumbnail Image.png
Description
Today, the electric power system faces new challenges from rapid developing technology and the growing concern about environmental problems. The future of the power system under these new challenges needs to be planned and studied. However, due to the high degree of computational complexity of the optimization problem, conducting a

Today, the electric power system faces new challenges from rapid developing technology and the growing concern about environmental problems. The future of the power system under these new challenges needs to be planned and studied. However, due to the high degree of computational complexity of the optimization problem, conducting a system planning study which takes into account the market structure and environmental constraints on a large-scale power system is computationally taxing. To improve the execution time of large system simulations, such as the system planning study, two possible strategies are proposed in this thesis. The first one is to implement a relative new factorization method, known as the multifrontal method, to speed up the solution of the sparse linear matrix equations within the large system simulations. The performance of the multifrontal method implemented by UMFAPACK is compared with traditional LU factorization on a wide range of power-system matrices. The results show that the multifrontal method is superior to traditional LU factorization on relatively denser matrices found in other specialty areas, but has poor performance on the more sparse matrices that occur in power-system applications. This result suggests that multifrontal methods may not be an effective way to improve execution time for large system simulation and power system engineers should evaluate the performance of the multifrontal method before applying it to their applications. The second strategy is to develop a small dc equivalent of the large-scale network with satisfactory accuracy for the large-scale system simulations. In this thesis, a modified Ward equivalent is generated for a large-scale power system, such as the full Electric Reliability Council of Texas (ERCOT) system. In this equivalent, all the generators in the full model are retained integrally. The accuracy of the modified Ward equivalent is validated and the equivalent is used to conduct the optimal generation investment planning study. By using the dc equivalent, the execution time for optimal generation investment planning is greatly reduced. Different scenarios are modeled to study the impact of fuel prices, environmental constraints and incentives for renewable energy on future investment and retirement in generation.
ContributorsLi, Nan (Author) / Tylavsky, Daniel J (Thesis advisor) / Vittal, Vijay (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2012
151289-Thumbnail Image.png
Description
A distributed-parameter model is developed for a pressurized water reactor (PWR) in order to analyze the frequency behavior of the nuclear reactor. The model is built based upon the partial differential equations describing heat transfer and fluid flow in the reactor core. As a comparison, a multi-lump reactor core model

A distributed-parameter model is developed for a pressurized water reactor (PWR) in order to analyze the frequency behavior of the nuclear reactor. The model is built based upon the partial differential equations describing heat transfer and fluid flow in the reactor core. As a comparison, a multi-lump reactor core model with five fuel lumps and ten coolant lumps using Mann's model is employed. The derivations of the different transfer functions in both models are also presented with emphasis on the distributed parameter. In order to contrast the two models, Bode plots of the transfer functions are generated using data from the Palo Verde Nuclear Generating Station. Further, a detailed contradistinction between these two models is presented. From the comparison, the features of both models are presented. The distributed parameter model has the ability to offer an accurate transfer function at any location throughout the reactor core. In contrast, the multi-lump parameter model can only provide the average value in a given region (lump). Also, in the distributed parameter model only the feedback according to the specific location under study is incorporated into the transfer function; whereas the transfer functions derived from the multi-lump model contain the average feedback effects happening all over the reactor core.
ContributorsZhang, Taipeng (Author) / Holbert, Keith E. (Thesis advisor) / Vittal, Vijay (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2012
152400-Thumbnail Image.png
Description
Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the desired skill level. It would result in more reliable and adaptive neural interfaces that could record optimal neural activity 24/7 with high fidelity signals, high yield and increased throughput. The main contribution here is validating adaptive strategies to overcome challenges in autonomous navigation of microelectrodes inside the brain. The following issues pose significant challenges as brain tissue is both functionally and structurally dynamic: a) time varying mechanical properties of the brain tissue-microelectrode interface due to the hyperelastic, viscoelastic nature of brain tissue b) non-stationarities in the neural signal caused by mechanical and physiological events in the interface and c) the lack of visual feedback of microelectrode position in brain tissue. A closed loop control algorithm is proposed here for autonomous navigation of microelectrodes in brain tissue while optimizing the signal-to-noise ratio of multi-unit neural recordings. The algorithm incorporates a quantitative understanding of constitutive mechanical properties of soft viscoelastic tissue like the brain and is guided by models that predict stresses developed in brain tissue during movement of the microelectrode. An optimal movement strategy is developed that achieves precise positioning of microelectrodes in the brain by minimizing the stresses developed in the surrounding tissue during navigation and maximizing the speed of movement. Results of testing the closed-loop control paradigm in short-term rodent experiments validated that it was possible to achieve a consistently high quality SNR throughout the duration of the experiment. At the systems level, new generation of MEMS actuators for movable microelectrode array are characterized and the MEMS device operation parameters are optimized for improved performance and reliability. Further, recommendations for packaging to minimize the form factor of the implant; design of device mounting and implantation techniques of MEMS microelectrode array to enhance the longevity of the implant are also included in a top-down approach to achieve a reliable brain interface.
ContributorsAnand, Sindhu (Author) / Muthuswamy, Jitendran (Thesis advisor) / Tillery, Stephen H (Committee member) / Buneo, Christopher (Committee member) / Abbas, James (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
152404-Thumbnail Image.png
Description
Insulation aging monitoring is widely used to evaluate the operating condition of power equipment. One important monitoring method is detecting partial discharges (PD). PD is a localized breakdown of dielectric and its characteristics can give information about the insulation aging. Most existing test methods cannot identify different kinds of defects.

Insulation aging monitoring is widely used to evaluate the operating condition of power equipment. One important monitoring method is detecting partial discharges (PD). PD is a localized breakdown of dielectric and its characteristics can give information about the insulation aging. Most existing test methods cannot identify different kinds of defects. Also, the practical application of PD detection in most existing test methods is restricted by weak PD signals and strong electric field disturbance from surroundings. In order to monitor aging situation in detail, types of PDs are important features to take into account. To classify different types of PDs, pulse sequence analysis (PSA) method is advocated to analyze PDs in the rod-plane model. This method can reflect cumulative effects of PDs, which are always ignored when only measuring PD value. It also shows uniform characteristics when different kinds of detecting system are utilized. Moreover, it does not need calibration. Analysis results from PSA show highly consistent distribution patterns for the same type of PDs and significant differences in the distribution patterns among types of PDs. Furthermore, a new method to detect PD signals using fiber bragg grating (FBG) based PD sensor is studied in this research. By using a piezoelectric ceramic transducer (PZT), small PD signals can be converted to pressure signal and then converted to an optical wavelength signal with FBG. The optical signal is isolated from the electric field; therefore its attenuation and anti-jamming performance will be better than traditional methods. Two sensors, one with resonant frequency of 42.7 kHz and the other 300 kHz, were used to explore the performance of this testing system. However, there were issues with the sensitivity of the sensors of these devices and the results have been communicated with the company. These devices could not give the results at the same level of accuracy as the conventional methods.
ContributorsCui, Longfei (Author) / Gorur, Ravi (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152321-Thumbnail Image.png
Description
In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real

In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real time model for market operations and other critical analysis functions in the EMS. Tradi-tionally, SE is run with data obtained only from supervisory control and data acquisition (SCADA) devices and systems. However, more emphasis on improving the performance of SE drives the inclusion of phasor measurement units (PMUs) into SE input data. PMU measurements are claimed to be more accurate than conventional measurements and PMUs `time stamp' measurements accurately. These widely distributed devices meas-ure the voltage phasors directly. That is, phase information for measured voltages and currents are available. PMUs provide data time stamps to synchronize measurements. Con-sidering the relatively small number of PMUs installed in contemporary power systems in North America, performing SE with only phasor measurements is not feasible. Thus a hy-brid SE, including both SCADA and PMU measurements, is the reality for contemporary power system SE. The hybrid approach is the focus of a number of research papers. There are many practical challenges in incorporating PMUs into SE input data. The higher reporting rates of PMUs as compared with SCADA measurements is one of the salient problems. The disparity of reporting rates raises a question whether buffering the phasor measurements helps to give better estimates of the states. The research presented in this thesis addresses the design of data buffers for PMU data as used in SE applications in electric power systems. The system theoretic analysis is illustrated using an operating electric power system in the southwest part of the USA. Var-ious instances of state estimation data have been used for analysis purposes. The details of the research, results obtained and conclusions drawn are presented in this document.
ContributorsMurugesan, Veerakumar (Author) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152719-Thumbnail Image.png
Description
Gait and balance disorders are the second leading cause of falls in the elderly. Investigating the changes in static and dynamic balance due to aging may provide a better understanding of the effects of aging on postural control system. Static and dynamic balance were evaluated in a total of 21

Gait and balance disorders are the second leading cause of falls in the elderly. Investigating the changes in static and dynamic balance due to aging may provide a better understanding of the effects of aging on postural control system. Static and dynamic balance were evaluated in a total of 21 young (21-35 years) and 22 elderly (50-75 years) healthy subjects while they performed three different tasks: quiet standing, dynamic weight shifts, and over ground walking. During the quiet standing task, the subjects stood with their eyes open and eyes closed. When performing dynamic weight shifts task, subjects shifted their Center of Pressure (CoP) from the center target to outward targets and vice versa while following real-time feedback of their CoP. For over ground walking tasks, subjects performed Timed Up and Go test, tandem walking, and regular walking at their self-selected speed. Various quantitative balance and gait measures were obtained to evaluate the above respective balance and walking tasks. Total excursion, sway area, and mean frequency of CoP during quiet standing were found to be the most reliable and showed significant increase with age and absence of visual input. During dynamic shifts, elderly subjects exhibited higher initiation time, initiation path length, movement time, movement path length, and inaccuracy indicating deterioration in performance. Furthermore, the elderly walked with a shorter stride length, increased stride variability, with a greater turn and turn-to-sit duration. Significant correlations were also observed between measures derived from the different balance and gait tasks. Thus, it can be concluded that aging deteriorates the postural control system affecting static and dynamic balance and some of the alterations in CoP and gait measures may be considered as protective mechanisms to prevent loss of balance.
ContributorsBalasubramanian, Shruthi (Author) / Krishnamurthi, Narayanan (Thesis advisor) / Abbas, James (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2014
152687-Thumbnail Image.png
Description
Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not

Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not well understood. In this dissertation, such learning is analyzed by means of single unit neural recordings in the rats' motor agranular medial (AGm) and agranular lateral (AGl) while the rats learned to perform a directional choice task. Multichannel chronic recordings using implanted microelectrodes in the rat's brain were essential to this study. Also for fundamental scientific investigations in general and for some applications such as brain machine interface, the recorded neural waveforms need to be analyzed first to identify neural action potentials as basic computing units. Prior to analyzing and modeling the recorded neural signals, this dissertation proposes an advanced spike sorting system, the M-Sorter, to extract the action potentials from raw neural waveforms. The M-Sorter shows better or comparable performance compared with two other popular spike sorters under automatic mode. With the sorted action potentials in place, neuronal activity in the AGm and AGl areas in rats during learning of a directional choice task is examined. Systematic analyses suggest that rat's neural activity in AGm and AGl was modulated by previous trial outcomes during learning. Single unit based neural dynamics during task learning are described in detail in the dissertation. Furthermore, the differences in neural modulation between fast and slow learning rats were compared. The results show that the level of neural modulation of previous trial outcome is different in fast and slow learning rats which may in turn suggest an important role of previous trial outcome encoding in learning.
ContributorsYuan, Yu'an (Author) / Si, Jennie (Thesis advisor) / Buneo, Christopher (Committee member) / Santello, Marco (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2014