This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150422-Thumbnail Image.png
Description
Among the various end-use sectors, the commercial sector is expected to have the second-largest increase in total primary energy consump¬tion from 2009 to 2035 (5.8 quadrillion Btu) with a growth rate of 1.1% per year, it is the fastest growing end-use sectors. In order to make major gains in reducing

Among the various end-use sectors, the commercial sector is expected to have the second-largest increase in total primary energy consump¬tion from 2009 to 2035 (5.8 quadrillion Btu) with a growth rate of 1.1% per year, it is the fastest growing end-use sectors. In order to make major gains in reducing U.S. building energy use commercial sector buildings must be improved. Energy benchmarking of buildings gives the facility manager or the building owner a quick evaluation of energy use and the potential for energy savings. It is the process of comparing the energy performance of a building to standards and codes, to a set target performance or to a range of energy performance values of similar buildings in order to help assess opportunities for improvement. Commissioning of buildings is the process of ensuring that systems are designed, installed, functionally tested and capable of being operated and maintained according to the owner's operational needs. It is the first stage in the building upgrade process after it has been assessed using benchmarking tools. The staged approach accounts for the interactions among all the energy flows in a building and produces a systematic method for planning upgrades that increase energy savings. This research compares and analyzes selected benchmarking and retrocommissioning tools to validate their accuracy such that they could be used in the initial audit process of a building. The benchmarking study analyzes the Energy Use Intensities (EUIs) and Ratings assigned by Portfolio Manager and Oak Ridge National Laboratory (ORNL) Spreadsheets. The 90.1 Prototype models and Commercial Reference Building model for Large Office building type were used for this comparative analysis. A case-study building from the DOE - funded Energize Phoenix program was also benchmarked for its EUI and rating. The retrocommissioning study was conducted by modeling these prototype models and the case-study building in the Facility Energy Decision System (FEDS) tool to simulate their energy consumption and analyze the retrofits suggested by the tool. The results of the benchmarking study proved that a benchmarking tool could be used as a first step in the audit process, encouraging the building owner to conduct an energy audit and realize the energy savings potential. The retrocommissioning study established the validity of FEDS as an accurate tool to simulate a building for its energy performance using basic inputs and to accurately predict the energy savings achieved by the retrofits recommended on the basis of maximum LCC savings.
ContributorsAgnihotri, Shreya Prabodhkumar (Author) / Reddy, T Agami (Thesis advisor) / Bryan, Harvey (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2011
150428-Thumbnail Image.png
Description
Evacuated tube solar thermal collector arrays have a wide range of applications. While most of these applications are limited in performance due to relatively low maximum operating temperatures, these collectors can still be useful in low grade thermal systems. An array of fifteen Apricus AP-30 evacuated tube collectors was designed,

Evacuated tube solar thermal collector arrays have a wide range of applications. While most of these applications are limited in performance due to relatively low maximum operating temperatures, these collectors can still be useful in low grade thermal systems. An array of fifteen Apricus AP-30 evacuated tube collectors was designed, assembled, and tested on the Arizona State University campus in Tempe, AZ. An existing system model was reprogrammed and updated for increased flexibility and ease of use. The model predicts the outlet temperature of the collector array based on the specified environmental conditions. The model was verified through a comparative analysis to the data collected during a three-month test period. The accuracy of this model was then compared against data calculated from the Solar Rating and Certification Corporation (SRCC) efficiency curve to determine the relative performance. It was found that both the original and updated models were able to generate reasonable predictions of the performance of the collector array with overall average percentage errors of 1.0% and 1.8%, respectively.
ContributorsStonebraker, Matthew (Author) / Phelan, Patrick (Thesis advisor) / Reddy, Agami (Committee member) / Bryan, Harvey (Committee member) / Arizona State University (Publisher)
Created2011