This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 125
152202-Thumbnail Image.png
Description
This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission

This thesis addresses the issue of making an economic case for energy storage in power systems. Bulk energy storage has often been suggested for large scale electric power systems in order to levelize load; store energy when it is inexpensive and discharge energy when it is expensive; potentially defer transmission and generation expansion; and provide for generation reserve margins. As renewable energy resource penetration increases, the uncertainty and variability of wind and solar may be alleviated by bulk energy storage technologies. The quadratic programming function in MATLAB is used to simulate an economic dispatch that includes energy storage. A program is created that utilizes quadratic programming to analyze various cases using a 2010 summer peak load from the Arizona transmission system, part of the Western Electricity Coordinating Council (WECC). The MATLAB program is used first to test the Arizona test bed with a low level of energy storage to study how the storage power limit effects several optimization out-puts such as the system wide operating costs. Very high levels of energy storage are then added to see how high level energy storage affects peak shaving, load factor, and other system applications. Finally, various constraint relaxations are made to analyze why the applications tested eventually approach a constant value. This research illustrates the use of energy storage which helps minimize the system wide generator operating cost by "shaving" energy off of the peak demand.
ContributorsRuggiero, John (Author) / Heydt, Gerald T (Thesis advisor) / Datta, Rajib (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2013
152258-Thumbnail Image.png
Description
Underground cables have been widely used in big cities. This is because underground cables offer the benefits of reducing visual impact and the disturbance caused by bad weather (wind, ice, snow, and the lightning strikes). Additionally, when placing power lines underground, the maintenance costs can also be reduced as a

Underground cables have been widely used in big cities. This is because underground cables offer the benefits of reducing visual impact and the disturbance caused by bad weather (wind, ice, snow, and the lightning strikes). Additionally, when placing power lines underground, the maintenance costs can also be reduced as a result. The underground cable rating calculation is the most critical part of designing the cable construction and cable installation. In this thesis, three contributions regarding the cable ampacity study have been made. First, an analytical method for rating of underground cables has been presented. Second, this research also develops the steady state and transient ratings for Salt River Project (SRP) 69 kV underground system using the commercial software CYMCAP for several typical substations. Third, to find an alternative way to predict the cable ratings, three regression models have been built. The residual plot and mean square error for the three methods have been analyzed. The conclusion is dawn that the nonlinear regression model provides the sufficient accuracy of the cable rating prediction for SRP's typical installation.
ContributorsWang, Tong (Author) / Tylavsky, Daniel (Thesis advisor) / Karady, George G. (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2013
152061-Thumbnail Image.png
Description
Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored. Past work has found little to no generalization to categories closely related to learned categories. These results do not fit

Most people are experts in some area of information; however, they may not be knowledgeable about other closely related areas. How knowledge is generalized to hierarchically related categories was explored. Past work has found little to no generalization to categories closely related to learned categories. These results do not fit well with other work focusing on attention during and after category learning. The current work attempted to merge these two areas of by creating a category structure with the best chance to detect generalization. Participants learned order level bird categories and family level wading bird categories. Then participants completed multiple measures to test generalization to old wading bird categories, new wading bird categories, owl and raptor categories, and lizard categories. As expected, the generalization measures converged on a single overall pattern of generalization. No generalization was found, except for already learned categories. This pattern fits well with past work on generalization within a hierarchy, but do not fit well with theories of dimensional attention. Reasons why these findings do not match are discussed, as well as directions for future research.
ContributorsLancaster, Matthew E (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / Chi, Michelene (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
151729-Thumbnail Image.png
Description
This thesis concerns the flashover issue of the substation insulators operating in a polluted environment. The outdoor insulation equipment used in the power delivery infrastructure encounter different types of pollutants due to varied environmental conditions. Various methods have been developed by manufacturers and researchers to mitigate the flashover problem. The

This thesis concerns the flashover issue of the substation insulators operating in a polluted environment. The outdoor insulation equipment used in the power delivery infrastructure encounter different types of pollutants due to varied environmental conditions. Various methods have been developed by manufacturers and researchers to mitigate the flashover problem. The application of Room Temperature Vulcanized (RTV) silicone rubber is one such favorable method as it can be applied over the already installed units. Field experience has already showed that the RTV silicone rubber coated insulators have a lower flashover probability than the uncoated insulators. The scope of this research is to quantify the improvement in the flashover performance. Artificial contamination tests were carried on station post insulators for assessing their performance. A factorial experiment design was used to model the flashover performance. The formulation included the severity of contamination and leakage distance of the insulator samples. Regression analysis was used to develop a mathematical model from the data obtained from the experiments. The main conclusion drawn from the study is that the RTV coated insulators withstood much higher levels of contamination even when the coating had lost its hydrophobicity. This improvement in flashover performance was found to be in the range of 20-40%. A much better flashover performance was observed when the coating recovered its hydrophobicity. It was also seen that the adhesion of coating was excellent even after many tests which involved substantial discharge activity.
ContributorsGholap, Vipul (Author) / Gorur, Ravi S (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151930-Thumbnail Image.png
Description
Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning

Incidental learning of sequential information occurs in visual, auditory and tactile domains. It occurs throughout our lifetime and even in nonhuman species. It is likely to be one of the most important foundations for the development of normal learning. To date, there is no agreement as to how incidental learning occurs. The goal of the present set of experiments is to determine if visual sequential information is learned in terms of abstract rules or stimulus-specific details. Two experiments test the extent to which interaction with the stimuli can influence the information that is encoded by the learner. The results of both experiments support the claim that stimulus and domain specific details directly shape what is learned, through a process of tuning the neuromuscular systems involved in the interaction between the learner and the materials.
ContributorsMarsh, Elizabeth R (Author) / Glenberg, Arthur M. (Thesis advisor) / Amazeen, Eric (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2013
151824-Thumbnail Image.png
Description
There is a lack of music therapy services for college students who have problems with depression and/or anxiety. Even among universities and colleges that offer music therapy degrees, there are no known programs offering music therapy to the institution's students. Female college students are particularly vulnerable to depression and anxiety

There is a lack of music therapy services for college students who have problems with depression and/or anxiety. Even among universities and colleges that offer music therapy degrees, there are no known programs offering music therapy to the institution's students. Female college students are particularly vulnerable to depression and anxiety symptoms compared to their male counterparts. Many students who experience mental health problems do not receive treatment, because of lack of knowledge, lack of services, or refusal of treatment. Music therapy is proposed as a reliable and valid complement or even an alternative to traditional counseling and pharmacotherapy because of the appeal of music to young women and the potential for a music therapy group to help isolated students form supportive networks. The present study recruited 14 female university students to participate in a randomized controlled trial of short-term group music therapy to address symptoms of depression and anxiety. The students were randomly divided into either the treatment group or the control group. Over 4 weeks, each group completed surveys related to depression and anxiety. Results indicate that the treatment group's depression and anxiety scores gradually decreased over the span of the treatment protocol. The control group showed either maintenance or slight worsening of depression and anxiety scores. Although none of the results were statistically significant, the general trend indicates that group music therapy was beneficial for the students. A qualitative analysis was also conducted for the treatment group. Common themes were financial concerns, relationship problems, loneliness, and time management/academic stress. All participants indicated that they benefited from the sessions. The group progressed in its cohesion and the participants bonded to the extent that they formed a supportive network which lasted beyond the end of the protocol. The results of this study are by no means conclusive, but do indicate that colleges with music therapy degree programs should consider adding music therapy services for their general student bodies.
ContributorsAshton, Barbara (Author) / Crowe, Barbara J. (Thesis advisor) / Rio, Robin (Committee member) / Davis, Mary (Committee member) / Arizona State University (Publisher)
Created2013
152482-Thumbnail Image.png
Description
Renewable portfolio standards prescribe for penetration of high amounts of re-newable energy sources (RES) that may change the structure of existing power systems. The load growth and changes in power flow caused by RES integration may result in re-quirements of new available transmission capabilities and upgrades of existing transmis-sion paths.

Renewable portfolio standards prescribe for penetration of high amounts of re-newable energy sources (RES) that may change the structure of existing power systems. The load growth and changes in power flow caused by RES integration may result in re-quirements of new available transmission capabilities and upgrades of existing transmis-sion paths. Construction difficulties of new transmission lines can become a problem in certain locations. The increase of transmission line thermal ratings by reconductoring using High Temperature Low Sag (HTLS) conductors is a comparatively new technology introduced to transmission expansion. A special design permits HTLS conductors to operate at high temperatures (e.g., 200oC), thereby allowing passage of higher current. The higher temperature capability increases the steady state and emergency thermal ratings of the transmission line. The main disadvantage of HTLS technology is high cost. The high cost may place special emphasis on a thorough analysis of cost to benefit of HTLS technology im-plementation. Increased transmission losses in HTLS conductors due to higher current may be a disadvantage that can reduce the attractiveness of this method. Studies described in this thesis evaluate the expenditures for transmission line re-conductoring using HTLS and the consequent benefits obtained from the potential decrease in operating cost for thermally limited transmission systems. Studies performed consider the load growth and penetration of distributed renewable energy sources according to the renewable portfolio standards for power systems. An evaluation of payback period is suggested to assess the cost to benefit ratio of HTLS upgrades. The thesis also considers the probabilistic nature of transmission upgrades. The well-known Chebyshev inequality is discussed with an application to transmission up-grades. The Chebyshev inequality is proposed to calculate minimum payback period ob-tained from the upgrades of certain transmission lines. The cost to benefit evaluation of HTLS upgrades is performed using a 225 bus equivalent of the 2012 summer peak Arizona portion of the Western Electricity Coordi-nating Council (WECC).
ContributorsTokombayev, Askhat (Author) / Heydt, Gerald T. (Thesis advisor) / Sankar, Lalitha (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2014
Description
The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and

The future grid will face challenges to meet an increased power demand by the consumers. Various solutions were studied to address this issue. One alternative to realize increased power flow in the grid is to use High Temperature Low Sag (HTLS) since it fulfills essential criteria of less sag and good material performance with temperature. HTLS conductors like Aluminum Conductor Composite Reinforced (ACCR) and Aluminum Conductor Carbon Composite (ACCC) are expected to face high operating temperatures of 150-200 degree Celsius in order to achieve the desired increased power flow. Therefore, it is imperative to characterize the material performance of these conductors with temperature. The work presented in this thesis addresses the characterization of carbon composite core based and metal matrix core based HTLS conductors. The thesis focuses on the study of variation of tensile strength of the carbon composite core with temperature and the level of temperature rise of the HTLS conductors due to fault currents cleared by backup protection. In this thesis, Dynamic Mechanical Analysis (DMA) was used to quantify the loss in storage modulus of carbon composite cores with temperature. It has been previously shown in literature that storage modulus is correlated to the tensile strength of the composite. Current temperature relationships of HTLS conductors were determined using the IEEE 738-2006 standard. Temperature rise of these conductors due to fault currents were also simulated. All simulations were performed using Microsoft Visual C++ suite. Tensile testing of metal matrix core was also performed. Results of DMA on carbon composite cores show that the storage modulus, hence tensile strength, decreases rapidly in the temperature range of intended use. DMA on composite cores subjected to heat treatment were conducted to investigate any changes in the variation of storage modulus curves. The experiments also indicates that carbon composites cores subjected to temperatures at or above 250 degree Celsius can cause permanent loss of mechanical properties including tensile strength. The fault current temperature analysis of carbon composite based conductors reveal that fault currents eventually cleared by backup protection in the event of primary protection failure can cause damage to fiber matrix interface.
ContributorsBanerjee, Koustubh (Author) / Gorur, Ravi (Committee member) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
152639-Thumbnail Image.png
Description
Sometimes difficult life events challenge our existing resources in such a way that routinized responses are inadequate to handle the challenge. Some individuals will persist in habitual, automatic behavior, regardless of environmental cues that indicate a mismatch between coping strategy and the demands of the stressor. Other individuals will marshal

Sometimes difficult life events challenge our existing resources in such a way that routinized responses are inadequate to handle the challenge. Some individuals will persist in habitual, automatic behavior, regardless of environmental cues that indicate a mismatch between coping strategy and the demands of the stressor. Other individuals will marshal adaptive resources to construct new courses of action and reconceptualize the problem, associated goals and/or values. A mixed methods approach was used to describe and operationalize cognitive shift, a relatively unexplored construct in existing literature. The study was conducted using secondary data from a parent multi-year cross-sectional study of resilience with eight hundred mid-aged adults from the Phoenix metro area. Semi-structured telephone interviews were analyzed using a purposive sample (n=136) chosen by type of life event. Participants' beliefs, assumptions, and experiences were examined to understand how they shaped adaptation to adversity. An adaptive mechanism, "cognitive shift," was theorized as the transition from automatic coping to effortful cognitive processes aimed at novel resolution of issues. Aims included understanding when and how cognitive shift emerges and manifests. Cognitive shift was scored as a binary variable and triangulated through correlational and logistic regression analyses. Interaction effects revealed that positive personality attributes influence cognitive shift most when people suffered early adversity. This finding indicates that a certain complexity, self-awareness and flexibility of mind may lead to a greater capacity to find meaning in adversity. This work bridges an acknowledged gap in literature and provides new insights into resilience.
ContributorsRivers, Crystal T (Author) / Zautra, Alex (Thesis advisor) / Davis, Mary (Committee member) / Kurpius, Sharon (Committee member) / Arizona State University (Publisher)
Created2014
152678-Thumbnail Image.png
Description
Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much less attention. In four experiments, participants view a number of

Recognition memory was investigated for naturalistic dynamic scenes. Although visual recognition for static objects and scenes has been investigated previously and found to be extremely robust in terms of fidelity and retention, visual recognition for dynamic scenes has received much less attention. In four experiments, participants view a number of clips from novel films and are then tasked to complete a recognition test containing frames from the previously viewed films and difficult foil frames. Recognition performance is good when foils are taken from other parts of the same film (Experiment 1), but degrades greatly when foils are taken from unseen gaps from within the viewed footage (Experiments 3 and 4). Removing all non-target frames had a serious effect on recognition performance (Experiment 2). Across all experiments, presenting the films as a random series of clips seemed to have no effect on recognition performance. Patterns of accuracy and response latency in Experiments 3 and 4 appear to be a result of a serial-search process. It is concluded that visual representations of dynamic scenes may be stored as units of events, and participant's old
ew judgments of individual frames were better characterized by a cued-recall paradigm than traditional recognition judgments.
ContributorsFerguson, Ryan (Author) / Homa, Donald (Thesis advisor) / Goldinger, Stephen (Committee member) / Glenberg, Arthur (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014