This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

152044-Thumbnail Image.png
Description
Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise,

Doppler radar can be used to measure respiration and heart rate without contact and through obstacles. In this work, a Doppler radar architecture at 2.4 GHz and a new signal processing algorithm to estimate the respiration and heart rate are presented. The received signal is dominated by the transceiver noise, LO phase noise and clutter which reduces the signal-to-noise ratio of the desired signal. The proposed architecture and algorithm are used to mitigate these issues and obtain an accurate estimate of the heart and respiration rate. Quadrature low-IF transceiver architecture is adopted to resolve null point problem as well as avoid 1/f noise and DC offset due to mixer-LO coupling. Adaptive clutter cancellation algorithm is used to enhance receiver sensitivity coupled with a novel Pattern Search in Noise Subspace (PSNS) algorithm is used to estimate respiration and heart rate. PSNS is a modified MUSIC algorithm which uses the phase noise to enhance Doppler shift detection. A prototype system was implemented using off-the-shelf TI and RFMD transceiver and tests were conduct with eight individuals. The measured results shows accurate estimate of the cardio pulmonary signals in low-SNR conditions and have been tested up to a distance of 6 meters.
ContributorsKhunti, Hitesh Devshi (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Bliss, Daniel (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2013
155930-Thumbnail Image.png
Description
The demand for the higher data rate in the wireless telecommunication is increasing rapidly. Providing higher data rate in cellular telecommunication systems is limited because of the limited physical resources such as telecommunication frequency channels. Besides, interference with the other users and self-interference signal in the receiver are the other

The demand for the higher data rate in the wireless telecommunication is increasing rapidly. Providing higher data rate in cellular telecommunication systems is limited because of the limited physical resources such as telecommunication frequency channels. Besides, interference with the other users and self-interference signal in the receiver are the other challenges in increasing the bandwidth of the wireless telecommunication system.

Full duplex wireless communication transmits and receives at the same time and the same frequency which was assumed impossible in the conventional wireless communication systems. Full duplex wireless communication, compared to the conventional wireless communication, doubles the channel efficiency and bandwidth. In addition, full duplex wireless communication system simplifies the reusing of the radio resources in small cells to eliminate the backhaul problem and simplifies the management of the spectrum. Finally, the full duplex telecommunication system reduces the costs of future wireless communication systems.

The main challenge in the full duplex wireless is the self-interference signal at the receiver which is very large compared to the receiver noise floor and it degrades the receiver performance significantly. In this dissertation, different techniques for the antenna interface and self-interference cancellation are proposed for the wireless full duplex transceiver. These techniques are designed and implemented on CMOS technology. The measurement results show that the full duplex wireless is possible for the short range and cellular wireless communication systems.
ContributorsAyati, Seyyed Amir (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Bliss, Daniel (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2017