This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

171810-Thumbnail Image.png
Description
For a system of autonomous vehicles functioning together in a traffic scene, 3Dunderstanding of participants in the field of view or surrounding is very essential for assessing the safety operation of the involved. This problem can be decomposed into online pose and shape estimation, which has been a core research area of

For a system of autonomous vehicles functioning together in a traffic scene, 3Dunderstanding of participants in the field of view or surrounding is very essential for assessing the safety operation of the involved. This problem can be decomposed into online pose and shape estimation, which has been a core research area of computer vision for over a decade now. This work is an add-on to support and improve the joint estimate of the pose and shape of vehicles from monocular cameras. The objective of jointly estimating the vehicle pose and shape online is enabled by what is called an offline reconstruction pipeline. In the offline reconstruction step, an approach to obtain the vehicle 3D shape with keypoints labeled is formulated. This work proposes a multi-view reconstruction pipeline using images and masks which can create an approximate shape of vehicles and can be used as a shape prior. Then a 3D model-fitting optimization approach to refine the shape prior using high quality computer-aided design (CAD) models of vehicles is developed. A dataset of such 3D vehicles with 20 keypoints annotated is prepared and call it the AvaCAR dataset. The AvaCAR dataset can be used to estimate the vehicle shape and pose, without having the need to collect significant amounts of data needed for adequate training of a neural network. The online reconstruction can use this synthesis dataset to generate novel viewpoints and simultaneously train a neural network for pose and shape estimation. Most methods in the current literature using deep neural networks, that are trained to estimate pose of the object from a single image, are inherently biased to the viewpoint of the images used. This approach aims at addressing these existing limitations in the current method by delivering the online estimation a shape prior which can generate novel views to account for the bias due to viewpoint. The dataset is provided with ground truth extrinsic parameters and the compact vector based shape representations which along with the multi-view dataset can be used to efficiently trained neural networks for vehicle pose and shape estimation. The vehicles in this library are evaluated with some standard metrics to assure they are capable of aiding online estimation and model based tracking.
ContributorsDUTTA, PRABAL BIJOY (Author) / Yang, Yezhou (Thesis advisor) / Berman, Spring (Committee member) / Lu, Duo (Committee member) / Arizona State University (Publisher)
Created2022
156281-Thumbnail Image.png
Description
Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time.

Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time. The focus of this work is to develop a new method of energy storage and charging for autonomous UAV systems, for use during long-term deployments in a constrained environment. We developed a charging solution that allows pre-equipped UAV system to land on top of designated charging pads and rapidly replenish their battery reserves, using a contact charging point. This system is designed to work with all types of rechargeable batteries, focusing on Lithium Polymer (LiPo) packs, that incorporate a battery management system for increased reliability. The project also explores optimization methods for fleets of UAV systems, to increase charging efficiency and extend battery lifespans. Each component of this project was first designed and tested in computer simulation. Following positive feedback and results, prototypes for each part of this system were developed and rigorously tested. Results show that the contact charging method is able to charge LiPo batteries at a 1-C rate, which is the industry standard rate, maintaining the same safety and efficiency standards as modern day direct connection chargers. Control software for these base stations was also created, to be integrated with a fleet management system, and optimizes UAV charge levels and distribution to extend LiPo battery lifetimes while still meeting expected mission demand. Each component of this project (hardware/software) was designed for manufacturing and implementation using industry standard tools, making it ideal for large-scale implementations. This system has been successfully tested with a fleet of UAV systems at Arizona State University, and is currently being integrated into an Arizona smart city environment for deployment.
ContributorsMian, Sami (Author) / Panchanathan, Sethuraman (Thesis advisor) / Berman, Spring (Committee member) / Yang, Yezhou (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2018
161595-Thumbnail Image.png
Description
With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent

With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent interaction with humans. The requirement elicits an essential problem of how to properly model human behavior, especially when individuals are interacting or cooperating with each other. The major objective of this thesis is to utilize the human intention decoding method to help robots enhance their performance while interacting with humans. Preliminary work on integrating human intention estimation with an HRI scenario is shown to demonstrate the benefit. In order to achieve this goal, the research topic is divided into three phases. First, a novel method of an online measure of the human's reliance on the robot, which can be estimated through the intention decoding process from human actions,is described. An experiment that requires human participants to complete an object-moving task with a robot manipulator was conducted under different conditions of distractions. A relationship is discovered between human intention and trust while participants performed a familiar task with no distraction. This finding suggests a relationship between the psychological construct of trust and joint physical coordination, which bridges the human's action to its mental states. Then, a novel human collaborative dynamic model is introduced based on game theory and bounded rationality, which is a novel method to describe human dyadic behavior with the aforementioned theories. The mutual intention decoding process was also considered to inform this model. Through this model, the connection between the mental states of the individuals to their cooperative actions is indicated. A haptic interface is developed with a virtual environment and the experiments are conducted with 30 human subjects. The result suggests the existence of mutual intention decoding during the human dyadic cooperative behaviors. Last, the empirical results show that allowing agents to have empathy in inference, which lets the agents understand that others might have a false understanding of their intentions, can help to achieve correct intention inference. It has been verified that knowledge about vehicle dynamics was also important to correctly infer intentions. A new courteous policy is proposed that bounded the courteous motion using its inferred set of equilibrium motions. A simulation, which is set to reproduce an intersection passing case between an autonomous car and a human driving car, is conducted to demonstrate the benefit of the novel courteous control policy.
ContributorsWang, Yiwei (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021