This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 5 of 5
Filtering by

Clear all filters

136627-Thumbnail Image.png
Description
This thesis focused on understanding how humans visually perceive swarm behavior through the use of swarm simulations and gaze tracking. The goal of this project was to determine visual patterns subjects display while observing and supervising a swarm as well as determine what swarm characteristics affect these patterns. As an

This thesis focused on understanding how humans visually perceive swarm behavior through the use of swarm simulations and gaze tracking. The goal of this project was to determine visual patterns subjects display while observing and supervising a swarm as well as determine what swarm characteristics affect these patterns. As an ultimate goal, it was hoped that this research will contribute to optimizing human-swarm interaction for the design of human supervisory controllers for swarms. To achieve the stated goals, two investigations were conducted. First, subjects gaze was tracked while observing a simulated swarm as it moved across the screen. This swarm changed in size, disturbance level in the position of the agents, speed, and path curvature. Second, subjects were asked to play a supervisory role as they watched a swarm move across the screen toward targets. The subjects determined whether a collision would occur and with which target while their responses as well as their gaze was tracked. In the case of an observatory role, a model of human gaze was created. This was embodied in a second order model similar to that of a spring-mass-damper system. This model was similar across subjects and stable. In the case of a supervisory role, inherent weaknesses in human perception were found, such as the inability to predict future position of curved paths. These findings are discussed in depth within the thesis. Overall, the results presented suggest that understanding human perception of swarms offers a new approach to the problem of swarm control. The ability to adapt controls to the strengths and weaknesses could lead to great strides in the reduction of operators in the control of one UAV, resulting in a move towards one man operation of a swarm.
ContributorsWhitton, Elena Michelle (Author) / Artemiadis, Panagiotis (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136913-Thumbnail Image.png
Description
In recent years, networked systems have become prevalent in communications, computing, sensing, and many other areas. In a network composed of spatially distributed agents, network-wide synchronization of information about the physical environment and the network configuration must be maintained using measurements collected locally by the agents. Registration is a process

In recent years, networked systems have become prevalent in communications, computing, sensing, and many other areas. In a network composed of spatially distributed agents, network-wide synchronization of information about the physical environment and the network configuration must be maintained using measurements collected locally by the agents. Registration is a process for connecting the coordinate frames of multiple sets of data. This poses numerous challenges, particularly due to availability of direct communication only between neighboring agents in the network. These are exacerbated by uncertainty in the measurements and also by imperfect communication links. This research explored statistically based registration in a sensor network. The approach developed exploits measurements of offsets formed as differences of state values between pairs of agents that share a link in the network graph. It takes into account that the true offsets around any closed cycle in the network graph must sum to zero.
ContributorsPhuong, Shih-Ling (Author) / Cochran, Douglas (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
Description
In order to refine autonomous exploratory movement planning schemes, an approach must be developed that accounts for valuable information other than that gained from map filling. To this end, the goal of this thesis is divided into two parts. The first is to develop a technique for categorizing objects detected

In order to refine autonomous exploratory movement planning schemes, an approach must be developed that accounts for valuable information other than that gained from map filling. To this end, the goal of this thesis is divided into two parts. The first is to develop a technique for categorizing objects detected by an autonomous exploratory robot and assigning them a score based on their interest value. The second is an attempt to develop a method of integrating this technique into a navigation algorithm in order to refine the movements of a robot or robots to maximize the efficiency of information gain. The intention of both of these components is to provide a method of refining the navigation scheme applied to autonomous exploring robots and maximize the amount of information they can gather in deployments where they face significant resource or functionality constraints. To this end this project is divided into two main sections: a shape-matching technique and a simulation in in which to implement this technique. The first section was accomplished by combining concepts from information theory, principal component analysis, and the eigenfaces algorithm to create an effective matching technique. The second was created with inspiration from existing navigation algorithms. Once these components were determined to be functional, a testing regime was applied to determine their capabilities. The testing regime was also divided into two parts. The tests applied to the matching technique were first to demonstrate that it functions under ideal conditions. After testing was conducted under ideal conditions, the technique was tested under non-ideal conditions. Additional tests were run to determine how the system responded to changes in the coefficients and equations that govern its operation. Similarly, the simulation component was initially tested under normal conditions to determine the base effectiveness of the approach. After these tests were conducted, alternative conditions were tested to evaluate the effects of modifying the implementation technique. The results of these tests indicated a few things. The first series of tests confirmed that the matching technique functions as expected under ideal conditions. The second series of tests determined that the matching element is effective for a reasonable range of variations and non-ideal conditions. The third series of tests showed that changing the functional coefficients of the matching technique can help tune the technique to different conditions. The fourth series of tests demonstrated that the basic concept of the implementation technique makes sense. The final series of tests demonstrated that modifying the implementation method is at least somewhat effective and that modifications to it can be used to specifically tailor the implementation to a method. Overall the results indicate that the stated goals of the project were accomplished successfully.
ContributorsFleetwood, Garrett Clark (Author) / Thanga, Jekan (Thesis director) / Berman, Spring (Committee member) / Middleton, James (Committee member) / Economics Program in CLAS (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

This thesis presents the design and simulation of an energy efficient controller for a system of three drones transporting a payload in a net. The object ensnared in the net is represented as a mass connected by massless stiff springs to each drone. Both a pole-placement approach and an optimal

This thesis presents the design and simulation of an energy efficient controller for a system of three drones transporting a payload in a net. The object ensnared in the net is represented as a mass connected by massless stiff springs to each drone. Both a pole-placement approach and an optimal control approach are used to design a trajectory controller for the system. Results are simulated for a single drone and the three drone system both without and with payload.

ContributorsHayden, Alexander (Author) / Grewal, Anoop (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2022-05
Description

The concept of entrainment broadly applies the locking of phases between 2 independent systems [17]. This physical phenomenon can be applied to modify neuromuscular movement in humans during bipedal locomotion. Gait entrainment to robotic devices have shown great success as alternatives to labor intensive methods of rehabilitation. By applying additional

The concept of entrainment broadly applies the locking of phases between 2 independent systems [17]. This physical phenomenon can be applied to modify neuromuscular movement in humans during bipedal locomotion. Gait entrainment to robotic devices have shown great success as alternatives to labor intensive methods of rehabilitation. By applying additional torque at the ankle joint, previous studies have exhibited consistent gait entrainment to both rigid and soft robotic devices. This entrainment is characterized by consistent phase locking of plantarflexion perturbations to the ‘push off’ event within the gait cycle. However, it is unclear whether such phase locking can be attributed to the plantarflexion assistance from the device or the sensory stimulus of movement at the ankle. To clarify the mechanism of entrainment, an experiment was designed to expose the user to a multitude of varying torques applied at the ankle to assist with plantar flexion. In this experiment, no significant difference in success of subject entrainment occurred when additional torque applied was greater than a detectable level. Force applied at the ankle varied from ~60N to ~130N. This resulted in successful entrainment ~88\% of the time at 98 N, with little to no increase in success as force increased thereafter. Alternatively, success of trials decreased significantly as force was reduced below this level, causing the perturbations to become undetectable by participants. Ultimately this suggests that higher levels of actuator pressure, and thus greater levels of torque applied to the foot, do not increase the likelihood of entrainment during walking. Rather, the results of this study suggest that proper detectable sensory stimulus is the true mechanism for entrainment.

ContributorsKruse, Anna (Author) / Lee, Hyunglae (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-12