This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155255-Thumbnail Image.png
Description
RF convergence of radar and communications users is rapidly becoming an issue for a multitude of stakeholders. To hedge against growing spectral congestion, research into cooperative radar and communications systems has been identified as a critical necessity for the United States and other countries. Further, the joint sensing-communicating paradigm appears

RF convergence of radar and communications users is rapidly becoming an issue for a multitude of stakeholders. To hedge against growing spectral congestion, research into cooperative radar and communications systems has been identified as a critical necessity for the United States and other countries. Further, the joint sensing-communicating paradigm appears imminent in several technological domains. In the pursuit of co-designing radar and communications systems that work cooperatively and benefit from each other's existence, joint radar-communications metrics are defined and bounded as a measure of performance. Estimation rate is introduced, a novel measure of radar estimation information as a function of time. Complementary to communications data rate, the two systems can now be compared on the same scale. An information-centric approach has a number of advantages, defining precisely what is gained through radar illumination and serves as a measure of spectral efficiency. Bounding radar estimation rate and communications data rate jointly, systems can be designed as a joint optimization problem.
ContributorsPaul, Bryan (Author) / Bliss, Daniel W. (Thesis advisor) / Berisha, Visar (Committee member) / Kosut, Oliver (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2017
158425-Thumbnail Image.png
Description
The inverse problem in electroencephalography (EEG) is the determination of form and location of neural activity associated to EEG recordings. This determination is of interest in evoked potential experiments where the activity is elicited by an external stimulus. This work investigates three aspects of this problem: the use of forward

The inverse problem in electroencephalography (EEG) is the determination of form and location of neural activity associated to EEG recordings. This determination is of interest in evoked potential experiments where the activity is elicited by an external stimulus. This work investigates three aspects of this problem: the use of forward methods in its solution, the elimination of artifacts that complicate the accurate determination of sources, and the construction of physical models that capture the electrical properties of the human head.

Results from this work aim to increase the accuracy and performance of the inverse solution process.

The inverse problem can be approached by constructing forward solutions where, for a know source, the scalp potentials are determined. This work demonstrates that the use of two variables, the dissipated power and the accumulated charge at interfaces, leads to a new solution method for the forward problem. The accumulated charge satisfies a boundary integral equation. Consideration of dissipated power determines bounds on the range of eigenvalues of the integral operators that appear in this formulation. The new method uses the eigenvalue structure to regularize singular integral operators thus allowing unambiguous solutions to the forward problem.

A major problem in the estimation of properties of neural sources is the presence of artifacts that corrupt EEG recordings. A method is proposed for the determination of inverse solutions that integrates sequential Bayesian estimation with probabilistic data association in order to suppress artifacts before estimating neural activity. This method improves the tracking of neural activity in a dynamic setting in the presence of artifacts.

Solution of the inverse problem requires the use of models of the human head. The electrical properties of biological tissues are best described by frequency dependent complex conductivities. Head models in EEG analysis, however, usually consider head regions as having only constant real conductivities. This work presents a model for tissues as composed of confined electrolytes that predicts complex conductivities for macroscopic measurements. These results indicate ways in which EEG models can be improved.
ContributorsSolis, Francisco Jr. (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Berisha, Visar (Committee member) / Bliss, Daniel (Committee member) / Moraffah, Bahman (Committee member) / Arizona State University (Publisher)
Created2020