This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

152801-Thumbnail Image.png
Description
Everyday speech communication typically takes place face-to-face. Accordingly, the task of perceiving speech is a multisensory phenomenon involving both auditory and visual information. The current investigation examines how visual information influences recognition of dysarthric speech. It also explores where the influence of visual information is dependent upon age. Forty adults

Everyday speech communication typically takes place face-to-face. Accordingly, the task of perceiving speech is a multisensory phenomenon involving both auditory and visual information. The current investigation examines how visual information influences recognition of dysarthric speech. It also explores where the influence of visual information is dependent upon age. Forty adults participated in the study that measured intelligibility (percent words correct) of dysarthric speech in auditory versus audiovisual conditions. Participants were then separated into two groups: older adults (age range 47 to 68) and young adults (age range 19 to 36) to examine the influence of age. Findings revealed that all participants, regardless of age, improved their ability to recognize dysarthric speech when visual speech was added to the auditory signal. The magnitude of this benefit, however, was greater for older adults when compared with younger adults. These results inform our understanding of how visual speech information influences understanding of dysarthric speech.
ContributorsFall, Elizabeth (Author) / Liss, Julie (Thesis advisor) / Berisha, Visar (Committee member) / Gray, Shelley (Committee member) / Arizona State University (Publisher)
Created2014
135499-Thumbnail Image.png
Description
Many mysteries still surround brain function, and yet greater understanding of it is vital to advancing scientific research. Studies on the brain in particular play a huge role in the medical field as analysis can lead to proper diagnosis of patients and to anticipatory treatments. The objective of this research

Many mysteries still surround brain function, and yet greater understanding of it is vital to advancing scientific research. Studies on the brain in particular play a huge role in the medical field as analysis can lead to proper diagnosis of patients and to anticipatory treatments. The objective of this research was to apply signal processing techniques on electroencephalogram (EEG) data in order to extract features for which to quantify an activity performed or a response to stimuli. The responses by the brain were shown in eigenspectrum plots in combination with time-frequency plots for each of the sensors to provide both spatial and temporal frequency analysis. Through this method, it was revealed how the brain responds to various stimuli not typically used in current research. Future applications might include testing similar stimuli on patients with neurological diseases to gain further insight into their condition.
ContributorsJackson, Matthew Joseph (Author) / Bliss, Daniel (Thesis director) / Berisha, Visar (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05