This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 25
Filtering by

Clear all filters

190708-Thumbnail Image.png
Description
Generative models are deep neural network-based models trained to learn the underlying distribution of a dataset. Once trained, these models can be used to sample novel data points from this distribution. Their impressive capabilities have been manifested in various generative tasks, encompassing areas like image-to-image translation, style transfer, image editing,

Generative models are deep neural network-based models trained to learn the underlying distribution of a dataset. Once trained, these models can be used to sample novel data points from this distribution. Their impressive capabilities have been manifested in various generative tasks, encompassing areas like image-to-image translation, style transfer, image editing, and more. One notable application of generative models is data augmentation, aimed at expanding and diversifying the training dataset to augment the performance of deep learning models for a downstream task. Generative models can be used to create new samples similar to the original data but with different variations and properties that are difficult to capture with traditional data augmentation techniques. However, the quality, diversity, and controllability of the shape and structure of the generated samples from these models are often directly proportional to the size and diversity of the training dataset. A more extensive and diverse training dataset allows the generative model to capture overall structures present in the data and generate more diverse and realistic-looking samples. In this dissertation, I present innovative methods designed to enhance the robustness and controllability of generative models, drawing upon physics-based, probabilistic, and geometric techniques. These methods help improve the generalization and controllability of the generative model without necessarily relying on large training datasets. I enhance the robustness of generative models by integrating classical geometric moments for shape awareness and minimizing trainable parameters. Additionally, I employ non-parametric priors for the generative model's latent space through basic probability and optimization methods to improve the fidelity of interpolated images. I adopt a hybrid approach to address domain-specific challenges with limited data and controllability, combining physics-based rendering with generative models for more realistic results. These approaches are particularly relevant in industrial settings, where the training datasets are small and class imbalance is common. Through extensive experiments on various datasets, I demonstrate the effectiveness of the proposed methods over conventional approaches.
ContributorsSingh, Rajhans (Author) / Turaga, Pavan (Thesis advisor) / Jayasuriya, Suren (Committee member) / Berisha, Visar (Committee member) / Fazli, Pooyan (Committee member) / Arizona State University (Publisher)
Created2023
190903-Thumbnail Image.png
Description
This dissertation centers on the development of Bayesian methods for learning differ- ent types of variation in switching nonlinear gene regulatory networks (GRNs). A new nonlinear and dynamic multivariate GRN model is introduced to account for different sources of variability in GRNs. The new model is aimed at more precisely

This dissertation centers on the development of Bayesian methods for learning differ- ent types of variation in switching nonlinear gene regulatory networks (GRNs). A new nonlinear and dynamic multivariate GRN model is introduced to account for different sources of variability in GRNs. The new model is aimed at more precisely capturing the complexity of GRN interactions through the introduction of time-varying kinetic order parameters, while allowing for variability in multiple model parameters. This model is used as the drift function in the development of several stochastic GRN mod- els based on Langevin dynamics. Six models are introduced which capture intrinsic and extrinsic noise in GRNs, thereby providing a full characterization of a stochastic regulatory system. A Bayesian hierarchical approach is developed for learning the Langevin model which best describes the noise dynamics at each time step. The trajectory of the state, which are the gene expression values, as well as the indicator corresponding to the correct noise model are estimated via sequential Monte Carlo (SMC) with a high degree of accuracy. To address the problem of time-varying regulatory interactions, a Bayesian hierarchical model is introduced for learning variation in switching GRN architectures with unknown measurement noise covariance. The trajectory of the state and the indicator corresponding to the network configuration at each time point are estimated using SMC. This work is extended to a fully Bayesian hierarchical model to account for uncertainty in the process noise covariance associated with each network architecture. An SMC algorithm with local Gibbs sampling is developed to estimate the trajectory of the state and the indicator correspond- ing to the network configuration at each time point with a high degree of accuracy. The results demonstrate the efficacy of Bayesian methods for learning information in switching nonlinear GRNs.
ContributorsVélez-Cruz, Nayely (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Moraffah, Bahman (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2023
171411-Thumbnail Image.png
Description
In the era of big data, more and more decisions and recommendations are being made by machine learning (ML) systems and algorithms. Despite their many successes, there have been notable deficiencies in the robustness, rigor, and reliability of these ML systems, which have had detrimental societal impacts. In the next

In the era of big data, more and more decisions and recommendations are being made by machine learning (ML) systems and algorithms. Despite their many successes, there have been notable deficiencies in the robustness, rigor, and reliability of these ML systems, which have had detrimental societal impacts. In the next generation of ML, these significant challenges must be addressed through careful algorithmic design, and it is crucial that practitioners and meta-algorithms have the necessary tools to construct ML models that align with human values and interests. In an effort to help address these problems, this dissertation studies a tunable loss function called α-loss for the ML setting of classification. The alpha-loss is a hyperparameterized loss function originating from information theory that continuously interpolates between the exponential (alpha = 1/2), log (alpha = 1), and 0-1 (alpha = infinity) losses, hence providing a holistic perspective of several classical loss functions in ML. Furthermore, the alpha-loss exhibits unique operating characteristics depending on the value (and different regimes) of alpha; notably, for alpha > 1, alpha-loss robustly trains models when noisy training data is present. Thus, the alpha-loss can provide robustness to ML systems for classification tasks, and this has bearing in many applications, e.g., social media, finance, academia, and medicine; indeed, results are presented where alpha-loss produces more robust logistic regression models for COVID-19 survey data with gains over state of the art algorithmic approaches.
ContributorsSypherd, Tyler (Author) / Sankar, Lalitha (Thesis advisor) / Berisha, Visar (Committee member) / Dasarathy, Gautam (Committee member) / Kosut, Oliver (Committee member) / Arizona State University (Publisher)
Created2022
168287-Thumbnail Image.png
Description
Dealing with relational data structures is central to a wide-range of applications including social networks, epidemic modeling, molecular chemistry, medicine, energy distribution, and transportation. Machine learning models that can exploit the inherent structural/relational bias in the graph structured data have gained prominence in recent times. A recurring idea that appears

Dealing with relational data structures is central to a wide-range of applications including social networks, epidemic modeling, molecular chemistry, medicine, energy distribution, and transportation. Machine learning models that can exploit the inherent structural/relational bias in the graph structured data have gained prominence in recent times. A recurring idea that appears in all approaches is to encode the nodes in the graph (or the entire graph) as low-dimensional vectors also known as embeddings, prior to carrying out downstream task-specific learning. It is crucial to eliminate hand-crafted features and instead directly incorporate the structural inductive bias into the deep learning architectures. In this dissertation, deep learning models that directly operate on graph structured data are proposed for effective representation learning. A literature review on existing graph representation learning is provided in the beginning of the dissertation. The primary focus of dissertation is on building novel graph neural network architectures that are robust against adversarial attacks. The proposed graph neural network models are extended to multiplex graphs (heterogeneous graphs). Finally, a relational neural network model is proposed to operate on a human structural connectome. For every research contribution of this dissertation, several empirical studies are conducted on benchmark datasets. The proposed graph neural network models, approaches, and architectures demonstrate significant performance improvements in comparison to the existing state-of-the-art graph embedding strategies.
ContributorsShanthamallu, Uday Shankar (Author) / Spanias, Andreas (Thesis advisor) / Thiagarajan, Jayaraman J (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2021
187769-Thumbnail Image.png
Description
This dissertation explores applications of machine learning methods in service of the design of screening tests, which are ubiquitous in applications from social work, to criminology, to healthcare. In the first part, a novel Bayesian decision theory framework is presented for designing tree-based adaptive tests. On an application to youth

This dissertation explores applications of machine learning methods in service of the design of screening tests, which are ubiquitous in applications from social work, to criminology, to healthcare. In the first part, a novel Bayesian decision theory framework is presented for designing tree-based adaptive tests. On an application to youth delinquency in Honduras, the method produces a 15-item instrument that is almost as accurate as a full-length 150+ item test. The framework includes specific considerations for the context in which the test will be administered, and provides uncertainty quantification around the trade-offs of shortening lengthy tests. In the second part, classification complexity is explored via theoretical and empirical results from statistical learning theory, information theory, and empirical data complexity measures. A simulation study that explicitly controls two key aspects of classification complexity is performed to relate the theoretical and empirical approaches. Throughout, a unified language and notation that formalizes classification complexity is developed; this same notation is used in subsequent chapters to discuss classification complexity in the context of a speech-based screening test. In the final part, the relative merits of task and feature engineering when designing a speech-based cognitive screening test are explored. Through an extensive classification analysis on a clinical speech dataset from patients with normal cognition and Alzheimer’s disease, the speech elicitation task is shown to have a large impact on test accuracy; carefully performed task and feature engineering are required for best results. A new framework for objectively quantifying speech elicitation tasks is introduced, and two methods are proposed for automatically extracting insights into the aspects of the speech elicitation task that are driving classification performance. The dissertation closes with recommendations for how to evaluate the obtained insights and use them to guide future design of speech-based screening tests.
ContributorsKrantsevich, Chelsea (Author) / Hahn, P. Richard (Thesis advisor) / Berisha, Visar (Committee member) / Lopes, Hedibert (Committee member) / Renaut, Rosemary (Committee member) / Zheng, Yi (Committee member) / Arizona State University (Publisher)
Created2023
187456-Thumbnail Image.png
Description
The past decade witnessed the success of deep learning models in various applications of computer vision and natural language processing. This success can be predominantly attributed to the (i) availability of large amounts of training data; (ii) access of domain aware knowledge; (iii) i.i.d assumption between the train and target

The past decade witnessed the success of deep learning models in various applications of computer vision and natural language processing. This success can be predominantly attributed to the (i) availability of large amounts of training data; (ii) access of domain aware knowledge; (iii) i.i.d assumption between the train and target distributions and (iv) belief on existing metrics as reliable indicators of performance. When any of these assumptions are violated, the models exhibit brittleness producing adversely varied behavior. This dissertation focuses on methods for accurate model design and characterization that enhance process reliability when certain assumptions are not met. With the need to safely adopt artificial intelligence tools in practice, it is vital to build reliable failure detectors that indicate regimes where the model must not be invoked. To that end, an error predictor trained with a self-calibration objective is developed to estimate loss consistent with the underlying model. The properties of the error predictor are described and their utility in supporting introspection via feature importances and counterfactual explanations is elucidated. While such an approach can signal data regime changes, it is critical to calibrate models using regimes of inlier (training) and outlier data to prevent under- and over-generalization in models i.e., incorrectly identifying inliers as outliers and vice-versa. By identifying the space for specifying inliers and outliers, an anomaly detector that can effectively flag data of varying semantic complexities in medical imaging is next developed. Uncertainty quantification in deep learning models involves identifying sources of failure and characterizing model confidence to enable actionability. A training strategy is developed that allows the accurate estimation of model uncertainties and its benefits are demonstrated for active learning and generalization gap prediction. This helps identify insufficiently sampled regimes and representation insufficiency in models. In addition, the task of deep inversion under data scarce scenarios is considered, which in practice requires a prior to control the optimization. By identifying limitations in existing work, data priors powered by generative models and deep model priors are designed for audio restoration. With relevant empirical studies on a variety of benchmarks, the need for such design strategies is demonstrated.
ContributorsNarayanaswamy, Vivek Sivaraman (Author) / Spanias, Andreas (Thesis advisor) / J. Thiagarajan, Jayaraman (Committee member) / Berisha, Visar (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2023
156892-Thumbnail Image.png
Description
With advances in automatic speech recognition, spoken dialogue systems are assuming increasingly social roles. There is a growing need for these systems to be socially responsive, capable of building rapport with users. In human-human interactions, rapport is critical to patient-doctor communication, conflict resolution, educational interactions, and social engagement. Rapport between

With advances in automatic speech recognition, spoken dialogue systems are assuming increasingly social roles. There is a growing need for these systems to be socially responsive, capable of building rapport with users. In human-human interactions, rapport is critical to patient-doctor communication, conflict resolution, educational interactions, and social engagement. Rapport between people promotes successful collaboration, motivation, and task success. Dialogue systems which can build rapport with their user may produce similar effects, personalizing interactions to create better outcomes.

This dissertation focuses on how dialogue systems can build rapport utilizing acoustic-prosodic entrainment. Acoustic-prosodic entrainment occurs when individuals adapt their acoustic-prosodic features of speech, such as tone of voice or loudness, to one another over the course of a conversation. Correlated with liking and task success, a dialogue system which entrains may enhance rapport. Entrainment, however, is very challenging to model. People entrain on different features in many ways and how to design entrainment to build rapport is unclear. The first goal of this dissertation is to explore how acoustic-prosodic entrainment can be modeled to build rapport.

Towards this goal, this work presents a series of studies comparing, evaluating, and iterating on the design of entrainment, motivated and informed by human-human dialogue. These models of entrainment are implemented in the dialogue system of a robotic learning companion. Learning companions are educational agents that engage students socially to increase motivation and facilitate learning. As a learning companion’s ability to be socially responsive increases, so do vital learning outcomes. A second goal of this dissertation is to explore the effects of entrainment on concrete outcomes such as learning in interactions with robotic learning companions.

This dissertation results in contributions both technical and theoretical. Technical contributions include a robust and modular dialogue system capable of producing prosodic entrainment and other socially-responsive behavior. One of the first systems of its kind, the results demonstrate that an entraining, social learning companion can positively build rapport and increase learning. This dissertation provides support for exploring phenomena like entrainment to enhance factors such as rapport and learning and provides a platform with which to explore these phenomena in future work.
ContributorsLubold, Nichola Anne (Author) / Walker, Erin (Thesis advisor) / Pon-Barry, Heather (Thesis advisor) / Litman, Diane (Committee member) / VanLehn, Kurt (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018
156587-Thumbnail Image.png
Description
Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance.

Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction.

We first consider sensor fusion, a typical multimodal fusion problem critical to building a pervasive computing platform. A systematic fusion technique is described to support both multiple sensors and descriptors for activity recognition. Targeted to learn the optimal combination of kernels, Multiple Kernel Learning (MKL) algorithms have been successfully applied to numerous fusion problems in computer vision etc. Utilizing the MKL formulation, next we describe an auto-context algorithm for learning image context via the fusion with low-level descriptors. Furthermore, a principled fusion algorithm using deep learning to optimize kernel machines is developed. By bridging deep architectures with kernel optimization, this approach leverages the benefits of both paradigms and is applied to a wide variety of fusion problems.

In many real-world applications, the modalities exhibit highly specific data structures, such as time sequences and graphs, and consequently, special design of the learning architecture is needed. In order to improve the temporal modeling for multivariate sequences, we developed two architectures centered around attention models. A novel clinical time series analysis model is proposed for several critical problems in healthcare. Another model coupled with triplet ranking loss as metric learning framework is described to better solve speaker diarization. Compared to state-of-the-art recurrent networks, these attention-based multivariate analysis tools achieve improved performance while having a lower computational complexity. Finally, in order to perform community detection on multilayer graphs, a fusion algorithm is described to derive node embedding from word embedding techniques and also exploit the complementary relational information contained in each layer of the graph.
ContributorsSong, Huan (Author) / Spanias, Andreas (Thesis advisor) / Thiagarajan, Jayaraman (Committee member) / Berisha, Visar (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2018
156805-Thumbnail Image.png
Description
Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.
ContributorsDutta, Arindam (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Richmond, Christ (Committee member) / Corman, Steven (Committee member) / Arizona State University (Publisher)
Created2018
154672-Thumbnail Image.png
Description
In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of the allocated spectrum among multiple systems in order to reduce

In recent years, there has been an increased interest in sharing available bandwidth to avoid spectrum congestion. With an ever-increasing number wireless users, it is critical to develop signal processing based spectrum sharing algorithms to achieve cooperative use of the allocated spectrum among multiple systems in order to reduce interference between systems. This work studies the radar and communications systems coexistence problem using two main approaches. The first approach develops methodologies to increase radar target tracking performance under low signal-to-interference-plus-noise ratio (SINR) conditions due to the coexistence of strong communications interference. The second approach jointly optimizes the performance of both systems by co-designing a common transmit waveform.

When concentrating on improving radar tracking performance, a pulsed radar that is tracking a single target coexisting with high powered communications interference is considered. Although the Cramer-Rao lower bound (CRLB) on the covariance of an unbiased estimator of deterministic parameters provides a bound on the estimation mean squared error (MSE), there exists an SINR threshold at which estimator covariance rapidly deviates from the CRLB. After demonstrating that different radar waveforms experience different estimation SINR thresholds using the Barankin bound (BB), a new radar waveform design method is proposed based on predicting the waveform-dependent BB SINR threshold under low SINR operating conditions.

A novel method of predicting the SINR threshold value for maximum likelihood estimation (MLE) is proposed. A relationship is shown to exist between the formulation of the BB kernel and the probability of selecting sidelobes for the MLE. This relationship is demonstrated as an accurate means of threshold prediction for the radar target parameter estimation of frequency, time-delay and angle-of-arrival.



For the co-design radar and communications system problem, the use of a common transmit waveform for a pulse-Doppler radar and a multiuser communications system is proposed. The signaling scheme for each system is selected from a class of waveforms with nonlinear phase function by optimizing the waveform parameters to minimize interference between the two systems and interference among communications users. Using multi-objective optimization, a trade-off in system performance is demonstrated when selecting waveforms that minimize both system interference and tracking MSE.
ContributorsKota, John S (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Berisha, Visar (Committee member) / Bliss, Daniel (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2016