This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 157
150353-Thumbnail Image.png
Description
Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.
ContributorsMuralidhar, Ashwini (Author) / Saripalli, Srikanth (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2011
149796-Thumbnail Image.png
Description
Telomerase is a specialized enzyme that adds telomeric DNA repeats to the chromosome ends to counterbalance the progressive telomere shortening over cell divisions. It has two essential core components, a catalytic telomerase reverse transcriptase protein (TERT), and a telomerase RNA (TR). TERT synthesizes telomeric DNA by reverse transcribing a short

Telomerase is a specialized enzyme that adds telomeric DNA repeats to the chromosome ends to counterbalance the progressive telomere shortening over cell divisions. It has two essential core components, a catalytic telomerase reverse transcriptase protein (TERT), and a telomerase RNA (TR). TERT synthesizes telomeric DNA by reverse transcribing a short template sequence in TR. Unlike TERT, TR is extremely divergent in size, sequence and structure and has only been identified in three evolutionarily distant groups. The lack of knowledge on TR from important model organisms has been a roadblock for vigorous studies on telomerase regulation. To address this issue, a novel in vitro system combining deep-sequencing and bioinformatics search was developed to discover TR from new phylogenetic groups. The system has been validated by the successful identification of TR from echinoderm purple sea urchin Strongylocentrotus purpuratus. The sea urchin TR (spTR) is the first invertebrate TR that has been identified and can serve as a model for understanding how the vertebrate TR evolved with vertebrate-specific traits. By using phylogenetic comparative analysis, the secondary structure of spTR was determined. The spTR secondary structure reveals unique sea urchin specific structure elements as well as homologous structural features shared by TR from other organisms. This study enhanced the understanding of telomerase mechanism and the evolution of telomerase RNP. The system that was used to identity telomerase RNA can be employed for the discovery of other TR as well as the discovery of novel RNA from other RNP complex.
ContributorsLi, Yang (Author) / Chen, Julian Jl (Thesis advisor) / Yan, Hao (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
149856-Thumbnail Image.png
Description
Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped

Nucleosomes are the basic repetitive unit of eukaryotic chromatin and are responsible for packing DNA inside the nucleus of the cell. They consist of a complex of eight histone proteins (two copies of four proteins H2A, H2B, H3 and H4) around which 147 base pairs of DNA are wrapped in ~1.67 superhelical turns. Although the nucleosomes are stable protein-DNA complexes, they undergo spontaneous conformational changes that occur in an asynchronous fashion. This conformational dynamics, defined by the "site-exposure" model, involves the DNA unwrapping from the protein core and exposing itself transiently before wrapping back. Physiologically, this allows regulatory proteins to bind to their target DNA sites during cellular processes like replication, DNA repair and transcription. Traditional biochemical assays have stablished the equilibrium constants for the accessibility to various sites along the length of the nucleosomal DNA, from its end to the middle of the dyad axis. Using fluorescence correlation spectroscopy (FCS), we have established the position dependent rewrapping rates for nucleosomes. We have also used Monte Carlo simulation methods to analyze the applicability of FRET fluctuation spectroscopy towards conformational dynamics, specifically motivated by nucleosome dynamics. Another important conformational change that is involved in cellular processes is the disassembly of nucleosome into its constituent particles. The exact pathway adopted by nucleosomes is still not clear. We used dual color fluorescence correlation spectroscopy to study the intermediates during nucleosome disassembly induced by changing ionic strength. Studying the nature of nucleosome conformational change and the kinetics is very important in understanding gene expression. The results from this thesis give a quantitative description to the basic unit of the chromatin.
ContributorsGurunathan, Kaushik (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Woodbury, Neal (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2011
150268-Thumbnail Image.png
Description
A major goal of synthetic biology is to recapitulate emergent properties of life. Despite a significant body of work, a longstanding question that remains to be answered is how such a complex system arose? In this dissertation, synthetic nucleic acid molecules with alternative sugar-phosphate backbones were investigated as potential ancestors

A major goal of synthetic biology is to recapitulate emergent properties of life. Despite a significant body of work, a longstanding question that remains to be answered is how such a complex system arose? In this dissertation, synthetic nucleic acid molecules with alternative sugar-phosphate backbones were investigated as potential ancestors of DNA and RNA. Threose nucleic acid (TNA) is capable of forming stable helical structures with complementary strands of itself and RNA. This provides a plausible mechanism for genetic information transfer between TNA and RNA. Therefore TNA has been proposed as a potential RNA progenitor. Using molecular evolution, functional sequences were isolated from a pool of random TNA molecules. This implicates a possible chemical framework capable of crosstalk between TNA and RNA. Further, this shows that heredity and evolution are not limited to the natural genetic system based on ribofuranosyl nucleic acids. Another alternative genetic system, glycerol nucleic acid (GNA) undergoes intrasystem pairing with superior thermalstability compared to that of DNA. Inspired by this property, I demonstrated a minimal nanostructure composed of both left- and right-handed mirro image GNA. This work suggested that GNA could be useful as promising orthogonal material in structural DNA nanotechnology.
ContributorsZhang, Su (Author) / Chaut, John C (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2011
152367-Thumbnail Image.png
Description
Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing

Advancements in mobile technologies have significantly enhanced the capabilities of mobile devices to serve as powerful platforms for sensing, processing, and visualization. Surges in the sensing technology and the abundance of data have enabled the use of these portable devices for real-time data analysis and decision-making in digital signal processing (DSP) applications. Most of the current efforts in DSP education focus on building tools to facilitate understanding of the mathematical principles. However, there is a disconnect between real-world data processing problems and the material presented in a DSP course. Sophisticated mobile interfaces and apps can potentially play a crucial role in providing a hands-on-experience with modern DSP applications to students. In this work, a new paradigm of DSP learning is explored by building an interactive easy-to-use health monitoring application for use in DSP courses. This is motivated by the increasing commercial interest in employing mobile phones for real-time health monitoring tasks. The idea is to exploit the computational abilities of the Android platform to build m-Health modules with sensor interfaces. In particular, appropriate sensing modalities have been identified, and a suite of software functionalities have been developed. Within the existing framework of the AJDSP app, a graphical programming environment, interfaces to on-board and external sensor hardware have also been developed to acquire and process physiological data. The set of sensor signals that can be monitored include electrocardiogram (ECG), photoplethysmogram (PPG), accelerometer signal, and galvanic skin response (GSR). The proposed m-Health modules can be used to estimate parameters such as heart rate, oxygen saturation, step count, and heart rate variability. A set of laboratory exercises have been designed to demonstrate the use of these modules in DSP courses. The app was evaluated through several workshops involving graduate and undergraduate students in signal processing majors at Arizona State University. The usefulness of the software modules in enhancing student understanding of signals, sensors and DSP systems were analyzed. Student opinions about the app and the proposed m-health modules evidenced the merits of integrating tools for mobile sensing and processing in a DSP curriculum, and familiarizing students with challenges in modern data-driven applications.
ContributorsRajan, Deepta (Author) / Spanias, Andreas (Thesis advisor) / Frakes, David (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152324-Thumbnail Image.png
Description
With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human

With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human to provide it some supervisory parameters that modify the degree of autonomy or allocate extra tasks to the robot. In this regard, this thesis presents an approach to include a provision to accept and incorporate such human inputs and modify the navigation functions of the robot accordingly. Concepts such as applying kinematical constraints while planning paths, traversing of unknown areas with an intent of maximizing field of view, performing complex tasks on command etc. have been examined and implemented. The approaches have been tested in Robot Operating System (ROS), using robots such as the iRobot Create, Personal Robotics (PR2) etc. Simulations and experimental demonstrations have proved that this approach is feasible for solving some of the existing problems and that it certainly can pave way to further research for enhancing functionality.
ContributorsVemprala, Sai Hemachandra (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152337-Thumbnail Image.png
Description
In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they are unable to adopt these behaviors due to resource constraints.

In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they are unable to adopt these behaviors due to resource constraints. Developing a framework to enable cooperative behavior adoption and to sustain it for a long period of time is a major challenge. As a part of developing this framework, I am focusing on methods to understand behavior diffusion over time. Facilitating behavior diffusion with resource constraints in a large population is qualitatively different from promoting cooperation in small groups. Previous work in social sciences has derived conditions for sustainable cooperative behavior in small homogeneous groups. However, how groups of individuals having resource constraint co-operate over extended periods of time is not well understood, and is the focus of my thesis. I develop models to analyze behavior diffusion over time through the lens of epidemic models with the condition that individuals have resource constraint. I introduce an epidemic model SVRS ( Susceptible-Volatile-Recovered-Susceptible) to accommodate multiple behavior adoption. I investigate the longitudinal effects of behavior diffusion by varying different properties of an individual such as resources,threshold and cost of behavior adoption. I also consider how behavior adoption of an individual varies with her knowledge of global adoption. I evaluate my models on several synthetic topologies like complete regular graph, preferential attachment and small-world and make some interesting observations. Periodic injection of early adopters can help in boosting the spread of behaviors and sustain it for a longer period of time. Also, behavior propagation for the classical epidemic model SIRS (Susceptible-Infected-Recovered-Susceptible) does not continue for an infinite period of time as per conventional wisdom. One interesting future direction is to investigate how behavior adoption is affected when number of individuals in a network changes. The affects on behavior adoption when availability of behavior changes with time can also be examined.
ContributorsDey, Anindita (Author) / Sundaram, Hari (Thesis advisor) / Turaga, Pavan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
151469-Thumbnail Image.png
Description
The F1Fo ATP synthase is required for energy conversion in almost all living organisms. The F1 complex is a molecular motor that uses ATP hydrolysis to drive rotation of the γ–subunit. It has not been previously possible to resolve the speed and position of the γ–subunit of the F1–ATPase as

The F1Fo ATP synthase is required for energy conversion in almost all living organisms. The F1 complex is a molecular motor that uses ATP hydrolysis to drive rotation of the γ–subunit. It has not been previously possible to resolve the speed and position of the γ–subunit of the F1–ATPase as it rotates during a power stroke. The single molecule experiments presented here measured light scattered from 45X91 nm gold nanorods attached to the γ–subunit that provide an unprecedented 5 μs resolution of rotational position as a function of time. The product of velocity and drag, which were both measured directly, resulted in an average torque of 63±8 pN nm for the Escherichia coli F1-ATPase that was determined to be independent of the load. The rotational velocity had an initial (I) acceleration phase 15° from the end of the catalytic dwell, a slow (S) acceleration phase during ATP binding/ADP release (15°–60°), and a fast (F) acceleration phase (60°–90°) containing an interim deceleration (ID) phase (75°–82°). High ADP concentrations decreased the velocity of the S phase proportional to 'ADP-release' dwells, and the F phase proportional to the free energy derived from the [ADP][Pi]/[ATP] chemical equilibrium. The decreased affinity for ITP increased ITP-binding dwells by 10%, but decreased velocity by 40% during the S phase. This is the first direct evidence that nucleotide binding contributes to F1–ATPase torque. Mutations that affect specific phases of rotation were identified, some in regions of F1 previously considered not to contribute to rotation. Mutations βD372V and γK9I increased the F phase velocity, and γK9I increased the depth of the ID phase. The conversion between S and F phases was specifically affected by γQ269L. While βT273D, βD305E, and αR283Q decreased the velocity of all phases, decreases in velocity due to βD302T, γR268L and γT82A were confined to the I and S phases. The correlations between the structural locations of these mutations and the phases of rotation they affect provide new insight into the molecular basis for F1–ATPase γ-subunit rotation.
ContributorsMartin, James (Author) / Frasch, Wayne D (Thesis advisor) / Chandler, Douglas (Committee member) / Gaxiola, Roberto (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2012
151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
151753-Thumbnail Image.png
Description
Solution conformations and dynamics of proteins and protein-DNA complexes are often difficult to predict from their crystal structures. The crystal structure only shows a snapshot of the different conformations these biological molecules can have in solution. Multiple different conformations can exist in solution and potentially have more importance in the

Solution conformations and dynamics of proteins and protein-DNA complexes are often difficult to predict from their crystal structures. The crystal structure only shows a snapshot of the different conformations these biological molecules can have in solution. Multiple different conformations can exist in solution and potentially have more importance in the biological activity. DNA sliding clamps are a family of proteins with known crystal structures. These clamps encircle the DNA and enable other proteins to interact more efficiently with the DNA. Eukaryotic PCNA and prokaryotic β clamp are two of these clamps, some of the most stable homo-oligomers known. However, their solution stability and conformational equilibrium have not been investigated in depth before. Presented here are the studies involving two sliding clamps: yeast PCNA and bacterial β clamp. These studies show that the β clamp has a very different solution stability than PCNA. These conclusions were reached through various different fluorescence-based experiments, including fluorescence correlation spectroscopy (FCS), Förster resonance energy transfer (FRET), single molecule fluorescence, and various time resolved fluorescence techniques. Interpretations of these, and all other, fluorescence-based experiments are often affected by the properties of the fluorophores employed. Often the fluorescence properties of these fluorophores are influenced by their microenvironments. Fluorophores are known to sometimes interact with biological molecules, and this can have pronounced effects on the rotational mobility and photophysical properties of the dye. Misunderstanding the effect of these photophysical and rotational properties can lead to a misinterpretation of the obtained data. In this thesis, photophysical behaviors of various organic dyes were studied in the presence of deoxymononucleotides to examine more closely how interactions between fluorophores and DNA bases can affect fluorescent properties. Furthermore, the properties of cyanine dyes when bound to DNA and the effect of restricted rotation on FRET are presented in this thesis. This thesis involves studying fluorophore photophysics in various microenvironments and then expanding into the solution stability and dynamics of the DNA sliding clamps.
ContributorsRanjit, Suman (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013