This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155705-Thumbnail Image.png
Description
Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic

Hydrodynamic phenomena such as the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities can be described by exponential/linear growth of surface perturbations at a bimaterial interface when subjected to constant/impulsive acceleration. A challenge in designing systems to mitigate or exploit these effects is the lack of accurate material models at large dynamic strain rates and pressures. In particular, little stress-strain constitutive information at large strain rates and pressures is available for transient material phases formed at high pressures, and the continuum effect the phase transformation process has on the instability evolution. In this work, a phase-aware isotropic strength model is developed and partially validated with a novel RM-based instability experiment in addition to existing data from the literature. With the validated material model additional simulations are performed to provide insight into to the role that robust material constitutive behavior (e.g., pressure, temperature, rate dependence) has on RM instability and how RM instability experiments can be used to characterize and validated expected material behavior. For phase aware materials, particularly iron in this work, the simulations predict a strong dependence on the Atwood number that single phase materials do not have. At Atwood numbers close to unity, and pressures in the high pressure stability region, the high pressure phase dominates the RM evolution. However, at Atwood numbers close to negative one, the RM evolution is only weakly affected by the high-pressure phase even for shocks well above the phase transformation threshold. In addition to RM evolution this work looks at the closely related shock front perturbation evolution. Existing analytical models for isentropic processes in gases and liquids are modified for metal equation of states and plastic behavior for the first time. It is found that the presence of a volume collapsing phase transformation with increased pressure causes shock front perturbations to decay sooner, while plastic strength has the opposite effect which is significantly different from the effect viscosity has. These results suggest additional experimental setups to validate material models, or relevant material parameters that can be optimized for system design objectives, e.g., minimize feed through perturbations in inertial confinement fusion capsules.
ContributorsOpie, Saul (Author) / Peralta, Pedro (Thesis advisor) / Loomis, Eric (Committee member) / Oswald, Jay (Committee member) / Rajan, Subramaniam D. (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2017
158136-Thumbnail Image.png
Description
Shock loading produces a compressive stress pulse with steep gradients in density, temperature, and pressure that are also often modeled as discontinuities. When a material is subject to these dynamic (shock) loading conditions, fracture and deformation patterns due to spall damage can arise. Spallation is a dynamic material failure that

Shock loading produces a compressive stress pulse with steep gradients in density, temperature, and pressure that are also often modeled as discontinuities. When a material is subject to these dynamic (shock) loading conditions, fracture and deformation patterns due to spall damage can arise. Spallation is a dynamic material failure that is caused by the nucleation, growth, and coalescence of voids, with possible ejection of the surface of the material. Intrinsic defects, such as grain boundaries are the preferred initiation sites of spall damage in high purity materials. The focus of this research is to study the phenomena that cause void nucleation and growth at a particular grain boundary (GB), chosen to maximize spall damage localization.

Bicrystal samples were shock loaded using flyer-plates via light gas gun and direct laser ablation. Stress, pulse duration, and crystal orientation along the shock direction were varied for a fixed boundary misorientation to determine thresholds for void nucleation and coalescence as functions of these parameters. Pressures for gas gun experiments ranged from 2 to 5 GPa, while pressures for laser ablation experiments varied from 17 to 25 GPa. Samples were soft recovered to perform damage characterization using electron backscattering diffraction (EBSD) and Scanning Electron Microscopy (SEM). Results showed a 14% difference in the thresholds for void nucleation and coalescence between samples with different orientations along the shock direction, which were affected by pulse duration and stress level. Fractography on boundaries with strong damage localization showed many small voids, indicating they experience rapid nucleation, causing early coalescence. Composition analysis was also performed to determine the effect of impurities on damage evolution. Results showed that higher levels of impurities led to more damage. ABAQUS/Explicit models were developed to simulate flyer-plate impact and void growth with the same crystal orientations and experimental conditions. Results are able to match the damage seen in each grain of the target experimentally. The Taylor Factor mismatch at the boundary can also be observed in the model with the higher Taylor Factor grain exhibiting more damage.
ContributorsFortin, Elizabeth Victoria (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Loomis, Eric (Committee member) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2020