This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

150660-Thumbnail Image.png
Description
Semiconductor scaling technology has led to a sharp growth in transistor counts. This has resulted in an exponential increase on both power dissipation and heat flux (or power density) in modern microprocessors. These microprocessors are integrated as the major components in many modern embedded devices, which offer richer features and

Semiconductor scaling technology has led to a sharp growth in transistor counts. This has resulted in an exponential increase on both power dissipation and heat flux (or power density) in modern microprocessors. These microprocessors are integrated as the major components in many modern embedded devices, which offer richer features and attain higher performance than ever before. Therefore, power and thermal management have become the significant design considerations for modern embedded devices. Dynamic voltage/frequency scaling (DVFS) and dynamic power management (DPM) are two well-known hardware capabilities offered by modern embedded processors. However, the power or thermal aware performance optimization is not fully explored for the mainstream embedded processors with discrete DVFS and DPM capabilities. Many key problems have not been answered yet. What is the maximum performance that an embedded processor can achieve under power or thermal constraint for a periodic application? Does there exist an efficient algorithm for the power or thermal management problems with guaranteed quality bound? These questions are hard to be answered because the discrete settings of DVFS and DPM enhance the complexity of many power and thermal management problems, which are generally NP-hard. The dissertation presents a comprehensive study on these NP-hard power and thermal management problems for embedded processors with discrete DVFS and DPM capabilities. In the domain of power management, the dissertation addresses the power minimization problem for real-time schedules, the energy-constrained make-span minimization problem on homogeneous and heterogeneous chip multiprocessors (CMP) architectures, and the battery aware energy management problem with nonlinear battery discharging model. In the domain of thermal management, the work addresses several thermal-constrained performance maximization problems for periodic embedded applications. All the addressed problems are proved to be NP-hard or strongly NP-hard in the study. Then the work focuses on the design of the off-line optimal or polynomial time approximation algorithms as solutions in the problem design space. Several addressed NP-hard problems are tackled by dynamic programming with optimal solutions and pseudo-polynomial run time complexity. Because the optimal algorithms are not efficient in worst case, the fully polynomial time approximation algorithms are provided as more efficient solutions. Some efficient heuristic algorithms are also presented as solutions to several addressed problems. The comprehensive study answers the key questions in order to fully explore the power and thermal management potentials on embedded processors with discrete DVFS and DPM capabilities. The provided solutions enable the theoretical analysis of the maximum performance for periodic embedded applications under power or thermal constraints.
ContributorsZhang, Sushu (Author) / Chatha, Karam S (Thesis advisor) / Cao, Yu (Committee member) / Konjevod, Goran (Committee member) / Vrudhula, Sarma (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2012
156189-Thumbnail Image.png
Description
Static CMOS logic has remained the dominant design style of digital systems for

more than four decades due to its robustness and near zero standby current. Static

CMOS logic circuits consist of a network of combinational logic cells and clocked sequential

elements, such as latches and flip-flops that are used for sequencing computations

over

Static CMOS logic has remained the dominant design style of digital systems for

more than four decades due to its robustness and near zero standby current. Static

CMOS logic circuits consist of a network of combinational logic cells and clocked sequential

elements, such as latches and flip-flops that are used for sequencing computations

over time. The majority of the digital design techniques to reduce power, area, and

leakage over the past four decades have focused almost entirely on optimizing the

combinational logic. This work explores alternate architectures for the flip-flops for

improving the overall circuit performance, power and area. It consists of three main

sections.

First, is the design of a multi-input configurable flip-flop structure with embedded

logic. A conventional D-type flip-flop may be viewed as realizing an identity function,

in which the output is simply the value of the input sampled at the clock edge. In

contrast, the proposed multi-input flip-flop, named PNAND, can be configured to

realize one of a family of Boolean functions called threshold functions. In essence,

the PNAND is a circuit implementation of the well-known binary perceptron. Unlike

other reconfigurable circuits, a PNAND can be configured by simply changing the

assignment of signals to its inputs. Using a standard cell library of such gates, a technology

mapping algorithm can be applied to transform a given netlist into one with

an optimal mixture of conventional logic gates and threshold gates. This approach

was used to fabricate a 32-bit Wallace Tree multiplier and a 32-bit booth multiplier

in 65nm LP technology. Simulation and chip measurements show more than 30%

improvement in dynamic power and more than 20% reduction in core area.

The functional yield of the PNAND reduces with geometry and voltage scaling.

The second part of this research investigates the use of two mechanisms to improve

the robustness of the PNAND circuit architecture. One is the use of forward and reverse body biases to change the device threshold and the other is the use of RRAM

devices for low voltage operation.

The third part of this research focused on the design of flip-flops with non-volatile

storage. Spin-transfer torque magnetic tunnel junctions (STT-MTJ) are integrated

with both conventional D-flipflop and the PNAND circuits to implement non-volatile

logic (NVL). These non-volatile storage enhanced flip-flops are able to save the state of

system locally when a power interruption occurs. However, manufacturing variations

in the STT-MTJs and in the CMOS transistors significantly reduce the yield, leading

to an overly pessimistic design and consequently, higher energy consumption. A

detailed analysis of the design trade-offs in the driver circuitry for performing backup

and restore, and a novel method to design the energy optimal driver for a given yield is

presented. Efficient designs of two nonvolatile flip-flop (NVFF) circuits are presented,

in which the backup time is determined on a per-chip basis, resulting in minimizing

the energy wastage and satisfying the yield constraint. To achieve a yield of 98%,

the conventional approach would have to expend nearly 5X more energy than the

minimum required, whereas the proposed tunable approach expends only 26% more

energy than the minimum. A non-volatile threshold gate architecture NV-TLFF are

designed with the same backup and restore circuitry in 65nm technology. The embedded

logic in NV-TLFF compensates performance overhead of NVL. This leads to the

possibility of zero-overhead non-volatile datapath circuits. An 8-bit multiply-and-

accumulate (MAC) unit is designed to demonstrate the performance benefits of the

proposed architecture. Based on the results of HSPICE simulations, the MAC circuit

with the proposed NV-TLFF cells is shown to consume at least 20% less power and

area as compared to the circuit designed with conventional DFFs, without sacrificing

any performance.
ContributorsYang, Jinghua (Author) / Vrudhula, Sarma (Thesis advisor) / Barnaby, Hugh (Committee member) / Cao, Yu (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2018
156845-Thumbnail Image.png
Description
The rapid improvement in computation capability has made deep convolutional neural networks (CNNs) a great success in recent years on many computer vision tasks with significantly improved accuracy. During the inference phase, many applications demand low latency processing of one image with strict power consumption requirement, which reduces the efficiency

The rapid improvement in computation capability has made deep convolutional neural networks (CNNs) a great success in recent years on many computer vision tasks with significantly improved accuracy. During the inference phase, many applications demand low latency processing of one image with strict power consumption requirement, which reduces the efficiency of GPU and other general-purpose platform, bringing opportunities for specific acceleration hardware, e.g. FPGA, by customizing the digital circuit specific for the deep learning algorithm inference. However, deploying CNNs on portable and embedded systems is still challenging due to large data volume, intensive computation, varying algorithm structures, and frequent memory accesses. This dissertation proposes a complete design methodology and framework to accelerate the inference process of various CNN algorithms on FPGA hardware with high performance, efficiency and flexibility.

As convolution contributes most operations in CNNs, the convolution acceleration scheme significantly affects the efficiency and performance of a hardware CNN accelerator. Convolution involves multiply and accumulate (MAC) operations with four levels of loops. Without fully studying the convolution loop optimization before the hardware design phase, the resulting accelerator can hardly exploit the data reuse and manage data movement efficiently. This work overcomes these barriers by quantitatively analyzing and optimizing the design objectives (e.g. memory access) of the CNN accelerator based on multiple design variables. An efficient dataflow and hardware architecture of CNN acceleration are proposed to minimize the data communication while maximizing the resource utilization to achieve high performance.

Although great performance and efficiency can be achieved by customizing the FPGA hardware for each CNN model, significant efforts and expertise are required leading to long development time, which makes it difficult to catch up with the rapid development of CNN algorithms. In this work, we present an RTL-level CNN compiler that automatically generates customized FPGA hardware for the inference tasks of various CNNs, in order to enable high-level fast prototyping of CNNs from software to FPGA and still keep the benefits of low-level hardware optimization. First, a general-purpose library of RTL modules is developed to model different operations at each layer. The integration and dataflow of physical modules are predefined in the top-level system template and reconfigured during compilation for a given CNN algorithm. The runtime control of layer-by-layer sequential computation is managed by the proposed execution schedule so that even highly irregular and complex network topology, e.g. GoogLeNet and ResNet, can be compiled. The proposed methodology is demonstrated with various CNN algorithms, e.g. NiN, VGG, GoogLeNet and ResNet, on two different standalone FPGAs achieving state-of-the art performance.

Based on the optimized acceleration strategy, there are still a lot of design options, e.g. the degree and dimension of computation parallelism, the size of on-chip buffers, and the external memory bandwidth, which impact the utilization of computation resources and data communication efficiency, and finally affect the performance and energy consumption of the accelerator. The large design space of the accelerator makes it impractical to explore the optimal design choice during the real implementation phase. Therefore, a performance model is proposed in this work to quantitatively estimate the accelerator performance and resource utilization. By this means, the performance bottleneck and design bound can be identified and the optimal design option can be explored early in the design phase.
ContributorsMa, Yufei (Author) / Vrudhula, Sarma (Thesis advisor) / Seo, Jae-Sun (Thesis advisor) / Cao, Yu (Committee member) / Barnaby, Hugh (Committee member) / Arizona State University (Publisher)
Created2018
157619-Thumbnail Image.png
Description
The past decade has seen a tremendous surge in running machine learning (ML) functions on mobile devices, from mere novelty applications to now indispensable features for the next generation of devices.

While the mobile platform capabilities range widely, long battery life and reliability are common design concerns that are crucial to

The past decade has seen a tremendous surge in running machine learning (ML) functions on mobile devices, from mere novelty applications to now indispensable features for the next generation of devices.

While the mobile platform capabilities range widely, long battery life and reliability are common design concerns that are crucial to remain competitive.

Consequently, state-of-the-art mobile platforms have become highly heterogeneous by combining a powerful CPUs with GPUs to accelerate the computation of deep neural networks (DNNs), which are the most common structures to perform ML operations.

But traditional von Neumann architectures are not optimized for the high memory bandwidth and massively parallel computation demands required by DNNs.

Hence, propelling research into non-von Neumann architectures to support the demands of DNNs.

The re-imagining of computer architectures to perform efficient DNN computations requires focusing on the prohibitive demands presented by DNNs and alleviating them. The two central challenges for efficient computation are (1) large memory storage and movement due to weights of the DNN and (2) massively parallel multiplications to compute the DNN output.

Introducing sparsity into the DNNs, where certain percentage of either the weights or the outputs of the DNN are zero, greatly helps with both challenges. This along with algorithm-hardware co-design to compress the DNNs is demonstrated to provide efficient solutions to greatly reduce the power consumption of hardware that compute DNNs. Additionally, exploring emerging technologies such as non-volatile memories and 3-D stacking of silicon in conjunction with algorithm-hardware co-design architectures will pave the way for the next generation of mobile devices.

Towards the objectives stated above, our specific contributions include (a) an architecture based on resistive crosspoint array that can update all values stored and compute matrix vector multiplication in parallel within a single cycle, (b) a framework of training DNNs with a block-wise sparsity to drastically reduce memory storage and total number of computations required to compute the output of DNNs, (c) the exploration of hardware implementations of sparse DNNs and architectural guidelines to reduce power consumption for the implementations in monolithic 3D integrated circuits, and (d) a prototype chip in 65nm CMOS accelerator for long-short term memory networks trained with the proposed block-wise sparsity scheme.
ContributorsKadetotad, Deepak Vinayak (Author) / Seo, Jae-Sun (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Vrudhula, Sarma (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2019