This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

187871-Thumbnail Image.png
Description
Trace evidence is an essential component of forensic investigations. Anthropogenicmaterials such as fibers and glass have been well studied for use in forensic trace evidence, but the potential use of retroreflective beads found in soils for forensic investigations is largely unexplored. Retroreflective glass beads are tiny spheres mixed into pavement

Trace evidence is an essential component of forensic investigations. Anthropogenicmaterials such as fibers and glass have been well studied for use in forensic trace evidence, but the potential use of retroreflective beads found in soils for forensic investigations is largely unexplored. Retroreflective glass beads are tiny spheres mixed into pavement markings to create reflective surfaces to reduce lane departure accidents. Retroreflective glass beads are a potentially new source of trace evidence for forensic investigations. Analysis of the spatial distribution and chemical compositions of retroreflective glass beads recovered from 17 soil samples were analyzed and compared to see if there are striking variations that can distinguish samples by source. Soil samples taken near marked roads showed significantly higher concentrations of glass beads, averaging from 0.18 bead/g of soil sample to 587 beads/g of soil, while soil samples taken near unmarked roads had average range of concentration of 0 bead/g of soil to 0.21 bead/g of soil. Retroreflective glass beads come from pavement markings, thus soil samples near marked roads are expected to have higher concentrations of glass beads. Analysis of spatial distribution of glass beads showed that as sample collection moved further from the road, concentration of glass beads decreased. ICP-MS results of elemental concentrations for each sample showed discriminative differences between samples, for most of the elements. An analysis of variance for elemental concentrations was conducted, and results showed statistically significant differences, beyond random chance alone for half of the elements analyzed. For forensic comparisons, a significant difference in even just one element is enough to conclude that the samples came from different sources. The elemental concentrations of glass beads collected from the same location, but of varying differences, was also analyzed. ANOVA results show significant differences for only one or two elements. A pair-wise t-test was conducted to determine which elements are most discriminative among all the samples. Rubidium was found to be the most discriminative, showing significant difference for 67% of the pairs. Beryllium, potassium, and manganese were also highly discriminative, showing significant difference for at least 50% of all the pairs.
ContributorsGomez, Janelle Kate Pacifico (Author) / Montero, Shirly (Thesis advisor) / Herckes, Pierre (Thesis advisor) / Borges, Chad (Committee member) / Gordon, Gwyneth (Committee member) / Arizona State University (Publisher)
Created2023
Description

Plasticizers are plastic additives used to enhance the physical properties of plastic and are ubiquitous in the environment. A class of plasticizer compounds called phthalate esters that are not fully eliminated in wastewater treatment facilities are relevant to the ecological health of downstream ecosystems and urban areas due to their

Plasticizers are plastic additives used to enhance the physical properties of plastic and are ubiquitous in the environment. A class of plasticizer compounds called phthalate esters that are not fully eliminated in wastewater treatment facilities are relevant to the ecological health of downstream ecosystems and urban areas due to their ecotoxicity, tendency for soil accumulation, and the emerging concern about their effects on public health. However, plasticizer concentrations in a constructed wetland environment have rarely been studied in the United States, prompting the need for a method of plasticizer quantification in the Tres Rios Constructed Wetlands which are sustained by the effluent of the 91st Avenue Wastewater Treatment Plant in Phoenix, Arizona. The concentrations of four common plasticizer compounds (dimethyl: DMP, diethyl: DEP, di-n-butyl: DnBP, and bis(2-ethylhexyl): DEHP phthalate) at five sites across the wetland surface water were quantified using solid-phase extraction followed by gas chromatography coupled with mass spectrometry (GC/MS). The sampling period included four sample sets taken from March 2022 to September 2022, which gave temporal data in addition to spatial concentration data. Quantification and quality control were performed using internal standard calibration, replicate samples, and laboratory blanks. Higher molecular weight phthalates accumulated in the wetland surface water at significantly higher average concentrations than those of lower molecular weight at a 95% confidence level, ranging from 8 ng/L to 7349 ng/L and 4 ng/L to 27876 ng/L for DnBP and DEHP, respectively. Concentrations for dimethyl phthalate and diethyl phthalate were typically less than 50 ng/L and were often below the method detection limit. Average concentrations of DnBP and DEHP were significantly higher during periods of high temperatures and arid conditions. The spatial distribution of phthalates was analyzed. Most importantly, a method for successful ultra-trace quantification of plasticizers at Tres Rios was established. These results confirm the presence of plasticizers at Tres Rios and a significant seasonal increase in their surface water concentrations. The developed analytical procedure provides a solid foundation for the Wetlands Environmental Ecology Lab at ASU to further investigate plasticizers and contaminants of emerging concern and determine their ultimate fate through volatilization, sorption, photodegradation, hydrolysis, microbial biodegradation, and phytoremediation studies.

ContributorsStorey, Garrett (Author) / Herckes, Pierre (Thesis director) / Childers, Dan (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
157302-Thumbnail Image.png
Description
Dielectrophoresis (DEP) is a technique that influences the motion of polarizable particles in an electric field gradient. DEP can be combined with other effects that influence the motion of a particle in a microchannel, such as electrophoresis and electroosmosis. Together, these three can be used to probe properties

Dielectrophoresis (DEP) is a technique that influences the motion of polarizable particles in an electric field gradient. DEP can be combined with other effects that influence the motion of a particle in a microchannel, such as electrophoresis and electroosmosis. Together, these three can be used to probe properties of an analyte, including charge, conductivity, and zeta potential. DEP shows promise as a high-resolution differentiation and separation method, with the ability to distinguish between subtly-different populations. This, combined with the fast (on the order of minutes) analysis times offered by the technique, lend it many of the features necessary to be used in rapid diagnostics and point-of-care devices.

Here, a mathematical model of dielectrophoretic data is presented to connect analyte properties with data features, including the intercept and slope, enabling DEP to be used in applications which require this information. The promise of DEP to distinguish between analytes with small differences is illustrated with antibiotic resistant bacteria. The DEP system is shown to differentiate between methicillin-resistant and susceptible Staphylococcus aureus. This differentiation was achieved both label free and with bacteria that had been fluorescently-labeled. Klebsiella pneumoniae carbapenemase-positive and negative Klebsiella pneumoniae were also distinguished, demonstrating the differentiation for a different mechanism of antibiotic resistance. Differences in dielectrophoretic behavior as displayed by S. aureus and K. pneumoniae were also shown by Staphylococcus epidermidis. These differences were exploited for a separation in space of gentamicin-resistant and -susceptible S. epidermidis. Besides establishing the ability of DEP to distinguish between populations with small biophysical differences, these studies illustrate the possibility for the use of DEP in applications such as rapid diagnostics.
ContributorsHilton, Shannon (Author) / Hayes, Mark A. (Thesis advisor) / Borges, Chad (Committee member) / Herckes, Pierre (Committee member) / Arizona State University (Publisher)
Created2019