This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 86
152006-Thumbnail Image.png
Description
When people look for things in their environment they use a target template - a mental representation of the object they are attempting to locate - to guide their attention around a scene and to assess incoming visual input to determine if they have found that for which they are

When people look for things in their environment they use a target template - a mental representation of the object they are attempting to locate - to guide their attention around a scene and to assess incoming visual input to determine if they have found that for which they are searching. However, unlike laboratory experiments, searchers in the real-world rarely have perfect knowledge regarding the appearance of their target. In five experiments (with nearly 1,000 participants), we examined how the precision of the observer's template affects their ability to conduct visual search. Specifically, we simulated template imprecision in two ways: First, by contaminating our searchers' templates with inaccurate features, and second, by introducing extraneous features to the template that were unhelpful. In those experiments we recorded the eye movements of our searchers in order to make inferences regarding the extent to which attentional guidance and decision-making are hindered by template imprecision. We also examined a third way in which templates may become imprecise; namely, that they may deteriorate over time. Overall, our findings support a dual-function theory of the target template, and highlight the importance of examining template precision in future research.
ContributorsHout, Michael C (Author) / Goldinger, Stephen D (Thesis advisor) / Azuma, Tamiko (Committee member) / Homa, Donald (Committee member) / Reichle, Erik (Committee member) / Arizona State University (Publisher)
Created2013
151634-Thumbnail Image.png
Description
Two groups of cochlear implant (CI) listeners were tested for sound source localization and for speech recognition in complex listening environments. One group (n=11) wore bilateral CIs and, potentially, had access to interaural level difference (ILD) cues, but not interaural timing difference (ITD) cues. The second group (n=12) wore a

Two groups of cochlear implant (CI) listeners were tested for sound source localization and for speech recognition in complex listening environments. One group (n=11) wore bilateral CIs and, potentially, had access to interaural level difference (ILD) cues, but not interaural timing difference (ITD) cues. The second group (n=12) wore a single CI and had low-frequency, acoustic hearing in both the ear contralateral to the CI and in the implanted ear. These `hearing preservation' listeners, potentially, had access to ITD cues but not to ILD cues. At issue in this dissertation was the value of the two types of information about sound sources, ITDs and ILDs, for localization and for speech perception when speech and noise sources were separated in space. For Experiment 1, normal hearing (NH) listeners and the two groups of CI listeners were tested for sound source localization using a 13 loudspeaker array. For the NH listeners, the mean RMS error for localization was 7 degrees, for the bilateral CI listeners, 20 degrees, and for the hearing preservation listeners, 23 degrees. The scores for the two CI groups did not differ significantly. Thus, both CI groups showed equivalent, but poorer than normal, localization. This outcome using the filtered noise bands for the normal hearing listeners, suggests ILD and ITD cues can support equivalent levels of localization. For Experiment 2, the two groups of CI listeners were tested for speech recognition in noise when the noise sources and targets were spatially separated in a simulated `restaurant' environment and in two versions of a `cocktail party' environment. At issue was whether either CI group would show benefits from binaural hearing, i.e., better performance when the noise and targets were separated in space. Neither of the CI groups showed spatial release from masking. However, both groups showed a significant binaural advantage (a combination of squelch and summation), which also maintained separation of the target and noise, indicating the presence of some binaural processing or `unmasking' of speech in noise. Finally, localization ability in Experiment 1 was not correlated with binaural advantage in Experiment 2.
ContributorsLoiselle, Louise (Author) / Dorman, Michael F. (Thesis advisor) / Yost, William A. (Thesis advisor) / Azuma, Tamiko (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2013
151671-Thumbnail Image.png
Description
Concussion, a subset of mild traumatic brain injury (mTBI), has recently been brought to the forefront of the media due to a large lawsuit filed against the National Football League. Concussion resulting from injury varies in severity, duration, and type, based on many characteristics about the individual that research does

Concussion, a subset of mild traumatic brain injury (mTBI), has recently been brought to the forefront of the media due to a large lawsuit filed against the National Football League. Concussion resulting from injury varies in severity, duration, and type, based on many characteristics about the individual that research does not presently understand. Chronic fatigue, poor working memory, impaired self-awareness, and lack of attention to task are symptoms commonly present post-concussion. Currently, there is not a standard method of assessing concussion, nor is there a way to track an individual's recovery, resulting in misguided treatment for better prognosis. The aim of the following study was to determine patient specific higher-order cognitive processing deficits for clinical diagnosis and prognosis of concussion. Six individuals (N=6) were seen during the acute phase of concussion, two of whom were seen subsequently when their symptoms were deemed clinically resolved. Subjective information was collected from both the patient and from neurology testing. Each individual completed a task, in which they were presented with degraded speech, taxing their higher-order cognitive processing. Patient specific behavioral patterns are noted, creating a unique paradigm for mapping subjective and objective data for each patient's strategy to compensate for deficits and understand speech in a difficult listening situation. Keywords: concussion, cognitive processing
ContributorsBerg, Dena (Author) / Liss, Julie M (Committee member) / Azuma, Tamiko (Committee member) / Caviness, John (Committee member) / Arizona State University (Publisher)
Created2013
152315-Thumbnail Image.png
Description
ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from

ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from WGS/WES are: to identify suspected yet unidentified genetic diseases, to characterize the genomic mutations in a tumor to identify targeted therapeutic agents and, to predict future diseases with the hope of promoting disease prevention strategies and/or offering early treatment. Promises notwithstanding, sequencing a human genome presents several interrelated challenges: how to adequately analyze, interpret, store, reanalyze and apply an unprecedented amount of genomic data (with uncertain clinical utility) to patient care? In addition, genomic data has the potential to become integral for improving the medical care of an individual and their family, years after a genome is sequenced. Current informed consent protocols do not adequately address the unique challenges and complexities inherent to the process of WGS/WES. This dissertation constructs a novel informed consent process for individuals considering WGS/WES, capable of fulfilling both legal and ethical requirements of medical consent while addressing the intricacies of WGS/WES, ultimately resulting in a more effective consenting experience. To better understand components of an effective consenting experience, the first part of this dissertation traces the historical origin of the informed consent process to identify the motivations, rationales and institutional commitments that sustain our current consenting protocols for genetic testing. After understanding the underlying commitments that shape our current informed consent protocols, I discuss the effectiveness of the informed consent process from an ethical and legal standpoint. I illustrate how WGS/WES introduces new complexities to the informed consent process and assess whether informed consent protocols proposed for WGS/WES address these complexities. The last section of this dissertation describes a novel informed consent process for WGS/WES, constructed from the original ethical intent of informed consent, analysis of existing informed consent protocols, and my own observations as a genetic counselor for what constitutes an effective consenting experience.
ContributorsHunt, Katherine (Author) / Hurlbut, J. Benjamin (Thesis advisor) / Robert, Jason S. (Thesis advisor) / Maienschein, Jane (Committee member) / Northfelt, Donald W. (Committee member) / Marchant, Gary (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2013
152351-Thumbnail Image.png
Description
Lung Cancer Alliance, a nonprofit organization, released the "No One Deserves to Die" advertising campaign in June 2012. The campaign visuals presented a clean, simple message to the public: the stigma associated with lung cancer drives marginalization of lung cancer patients. Lung Cancer Alliance (LCA) asserts that negative public attitude

Lung Cancer Alliance, a nonprofit organization, released the "No One Deserves to Die" advertising campaign in June 2012. The campaign visuals presented a clean, simple message to the public: the stigma associated with lung cancer drives marginalization of lung cancer patients. Lung Cancer Alliance (LCA) asserts that negative public attitude toward lung cancer stems from unacknowledged moral judgments that generate 'stigma.' The campaign materials are meant to expose and challenge these common public category-making processes that occur when subconsciously evaluating lung cancer patients. These processes involve comparison, perception of difference, and exclusion. The campaign implies that society sees suffering of lung cancer patients as indicative of moral failure, thus, not warranting assistance from society, which leads to marginalization of the diseased. Attributing to society a morally laden view of the disease, the campaign extends this view to its logical end and makes it explicit: lung cancer patients no longer deserve to live because they themselves caused the disease (by smoking). This judgment and resulting marginalization is, according to LCA, evident in the ways lung cancer patients are marginalized relative to other diseases via minimal research funding, high- mortality rates and low awareness of the disease. Therefore, society commits an injustice against those with lung cancer. This research analyzes the relationship between disease, identity-making, and responsibilities within society as represented by this stigma framework. LCA asserts that society understands lung cancer in terms of stigma, and advocates that society's understanding of lung cancer should be shifted from a stigma framework toward a medical framework. Analysis of identity-making and responsibility encoded in both frameworks contributes to evaluation of the significance of reframing this disease. One aim of this thesis is to explore the relationship between these frameworks in medical sociology. The results show a complex interaction that suggest trading one frame for another will not destigmatize the lung cancer patient. Those interactions cause tangible harms, such as high mortality rates, and there are important implications for other communities that experience a stigmatized disease.
ContributorsCalvelage, Victoria (Author) / Hurlbut, J. Benjamin (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2013
152859-Thumbnail Image.png
Description
Previous research has shown that people can implicitly learn repeated visual contexts and use this information when locating relevant items. For example, when people are presented with repeated spatial configurations of distractor items or distractor identities in visual search, they become faster to find target stimuli in these repeated contexts

Previous research has shown that people can implicitly learn repeated visual contexts and use this information when locating relevant items. For example, when people are presented with repeated spatial configurations of distractor items or distractor identities in visual search, they become faster to find target stimuli in these repeated contexts over time (Chun and Jiang, 1998; 1999). Given that people learn these repeated distractor configurations and identities, might they also implicitly encode semantic information about distractors, if this information is predictive of the target location? We investigated this question with a series of visual search experiments using real-world stimuli within a contextual cueing paradigm (Chun and Jiang, 1998). Specifically, we tested whether participants could learn, through experience, that the target images they are searching for are always located near specific categories of distractors, such as food items or animals. We also varied the spatial consistency of target locations, in order to rule out implicit learning of repeated target locations. Results suggest that participants implicitly learned the target-predictive categories of distractors and used this information during search, although these results failed to reach significance. This lack of significance may have been due the relative simplicity of the search task, however, and several new experiments are proposed to further investigate whether repeated category information can benefit search.
ContributorsWalenchok, Stephen C (Author) / Goldinger, Stephen D (Thesis advisor) / Azuma, Tamiko (Committee member) / Homa, Donald (Committee member) / Hout, Michael C (Committee member) / Arizona State University (Publisher)
Created2014
152926-Thumbnail Image.png
Description
Teaching evolution has been shown to be a challenge for faculty, in both K-12 and postsecondary education. Many of these challenges stem from perceived conflicts not only between religion and evolution, but also faculty beliefs about religion, it's compatibility with evolutionary theory, and it's proper role in classroom curriculum. Studies

Teaching evolution has been shown to be a challenge for faculty, in both K-12 and postsecondary education. Many of these challenges stem from perceived conflicts not only between religion and evolution, but also faculty beliefs about religion, it's compatibility with evolutionary theory, and it's proper role in classroom curriculum. Studies suggest that if educators engage with students' religious beliefs and identity, this may help students have positive attitudes towards evolution. The aim of this study was to reveal attitudes and beliefs professors have about addressing religion and providing religious scientist role models to students when teaching evolution. 15 semi-structured interviews of tenured biology professors were conducted at a large Midwestern universiy regarding their beliefs, experiences, and strategies teaching evolution and particularly, their willingness to address religion in a class section on evolution. Following a qualitative analysis of transcripts, professors did not agree on whether or not it is their job to help students accept evolution (although the majority said it is not), nor did they agree on a definition of "acceptance of evolution". Professors are willing to engage in students' religious beliefs, if this would help their students accept evolution. Finally, professors perceived many challenges to engaging students' religious beliefs in a science classroom such as the appropriateness of the material for a science class, large class sizes, and time constraints. Given the results of this study, the author concludes that instructors must come to a consensus about their goals as biology educators as well as what "acceptance of evolution" means, before they can realistically apply the engagement of student's religious beliefs and identity as an educational strategy.
ContributorsBarnes, Maryann Elizabeth (Author) / Brownell, Sara E (Thesis advisor) / Brem, Sarah K. (Thesis advisor) / Lynch, John M. (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2014
153419-Thumbnail Image.png
Description
A multitude of individuals across the globe suffer from hearing loss and that number continues to grow. Cochlear implants, while having limitations, provide electrical input for users enabling them to "hear" and more fully interact socially with their environment. There has been a clinical shift to the

A multitude of individuals across the globe suffer from hearing loss and that number continues to grow. Cochlear implants, while having limitations, provide electrical input for users enabling them to "hear" and more fully interact socially with their environment. There has been a clinical shift to the bilateral placement of implants in both ears and to bimodal placement of a hearing aid in the contralateral ear if residual hearing is present. However, there is potentially more to subsequent speech perception for bilateral and bimodal cochlear implant users than the electric and acoustic input being received via these modalities. For normal listeners vision plays a role and Rosenblum (2005) points out it is a key feature of an integrated perceptual process. Logically, cochlear implant users should also benefit from integrated visual input. The question is how exactly does vision provide benefit to bilateral and bimodal users. Eight (8) bilateral and 5 bimodal participants received randomized experimental phrases previously generated by Liss et al. (1998) in auditory and audiovisual conditions. The participants recorded their perception of the input. Data were consequently analyzed for percent words correct, consonant errors, and lexical boundary error types. Overall, vision was found to improve speech perception for bilateral and bimodal cochlear implant participants. Each group experienced a significant increase in percent words correct when visual input was added. With vision bilateral participants reduced consonant place errors and demonstrated increased use of syllabic stress cues used in lexical segmentation. Therefore, results suggest vision might provide perceptual benefits for bilateral cochlear implant users by granting access to place information and by augmenting cues for syllabic stress in the absence of acoustic input. On the other hand vision did not provide the bimodal participants significantly increased access to place and stress cues. Therefore the exact mechanism by which bimodal implant users improved speech perception with the addition of vision is unknown. These results point to the complexities of audiovisual integration during speech perception and the need for continued research regarding the benefit vision provides to bilateral and bimodal cochlear implant users.
ContributorsLudwig, Cimarron (Author) / Liss, Julie (Thesis advisor) / Dorman, Michael (Committee member) / Azuma, Tamiko (Committee member) / Arizona State University (Publisher)
Created2015
153477-Thumbnail Image.png
Description
Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act

Blind and visually impaired individuals have historically demonstrated a low participation in the fields of science, engineering, mathematics, and technology (STEM). This low participation is reflected in both their education and career choices. Despite the establishment of the Americans with Disabilities Act (ADA) and the Individuals with Disabilities Education Act (IDEA), blind and visually impaired (BVI) students continue to academically fall below the level of their sighted peers in the areas of science and math. Although this deficit is created by many factors, this study focuses on the lack of adequate accessible image based materials. Traditional methods for creating accessible image materials for the vision impaired have included detailed verbal descriptions accompanying an image or conversion into a simplified tactile graphic. It is very common that no substitute materials will be provided to students within STEM courses because they are image rich disciplines and often include a large number images, diagrams and charts. Additionally, images that are translated into text or simplified into basic line drawings are frequently inadequate because they rely on the interpretations of resource personnel who do not have expertise in STEM. Within this study, a method to create a new type of tactile 3D image was developed using High Density Polyethylene (HDPE) and Computer Numeric Control (CNC) milling. These tactile image boards preserve high levels of detail when compared to the original print image. To determine the discernibility and effectiveness of tactile images, these customizable boards were tested in various

university classrooms as well as in participation studies which included BVI and sighted students. Results from these studies indicate that tactile images are discernable and were found to improve performance in lab exercises as much as 60% for those with visual impairment. Incorporating tactile HDPE 3D images into a classroom setting was shown to increase the interest, participation and performance of BVI students suggesting that this type of 3D tactile image should be incorporated into STEM classes to increase the participation of these students and improve the level of training they receive in science and math.
ContributorsGonzales, Ashleigh (Author) / Baluch, Debra P (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2015
153415-Thumbnail Image.png
Description
In the noise and commotion of daily life, people achieve effective communication partly because spoken messages are replete with redundant information. Listeners exploit available contextual, linguistic, phonemic, and prosodic cues to decipher degraded speech. When other cues are absent or ambiguous, phonemic and prosodic cues are particularly important

In the noise and commotion of daily life, people achieve effective communication partly because spoken messages are replete with redundant information. Listeners exploit available contextual, linguistic, phonemic, and prosodic cues to decipher degraded speech. When other cues are absent or ambiguous, phonemic and prosodic cues are particularly important because they help identify word boundaries, a process known as lexical segmentation. Individuals vary in the degree to which they rely on phonemic or prosodic cues for lexical segmentation in degraded conditions.

Deafened individuals who use a cochlear implant have diminished access to fine frequency information in the speech signal, and show resulting difficulty perceiving phonemic and prosodic cues. Auditory training on phonemic elements improves word recognition for some listeners. Little is known, however, about the potential benefits of prosodic training, or the degree to which individual differences in cue use affect outcomes.

The present study used simulated cochlear implant stimulation to examine the effects of phonemic and prosodic training on lexical segmentation. Participants completed targeted training with either phonemic or prosodic cues, and received passive exposure to the non-targeted cue. Results show that acuity to the targeted cue improved after training. In addition, both targeted attention and passive exposure to prosodic features led to increased use of these cues for lexical segmentation. Individual differences in degree and source of benefit point to the importance of personalizing clinical intervention to increase flexible use of a range of perceptual strategies for understanding speech.
ContributorsHelms Tillery, Augusta Katherine (Author) / Liss, Julie M. (Thesis advisor) / Azuma, Tamiko (Committee member) / Brown, Christopher A. (Committee member) / Dorman, Michael F. (Committee member) / Utianski, Rene L. (Committee member) / Arizona State University (Publisher)
Created2015