This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 182
152025-Thumbnail Image.png
Description
At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis

At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.
ContributorsPrakash, Nitin (Author) / Heydt, Gerald T. (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152174-Thumbnail Image.png
Description
Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can

Recent trends in the electric power industry have led to more attention to optimal operation of power transformers. In a deregulated environment, optimal operation means minimizing the maintenance and extending the life of this critical and costly equipment for the purpose of maximizing profits. Optimal utilization of a transformer can be achieved through the use of dynamic loading. A benefit of dynamic loading is that it allows better utilization of the transformer capacity, thus increasing the flexibility and reliability of the power system. This document presents the progress on a software application which can estimate the maximum time-varying loading capability of transformers. This information can be used to load devices closer to their limits without exceeding the manufacturer specified operating limits. The maximally efficient dynamic loading of transformers requires a model that can accurately predict both top-oil temperatures (TOTs) and hottest-spot temperatures (HSTs). In the previous work, two kinds of thermal TOT and HST models have been studied and used in the application: the IEEE TOT/HST models and the ASU TOT/HST models. And, several metrics have been applied to evaluate the model acceptability and determine the most appropriate models for using in the dynamic loading calculations. In this work, an investigation to improve the existing transformer thermal models performance is presented. Some factors that may affect the model performance such as improper fan status and the error caused by the poor performance of IEEE models are discussed. Additional methods to determine the reliability of transformer thermal models using metrics such as time constant and the model parameters are also provided. A new production grade application for real-time dynamic loading operating purpose is introduced. This application is developed by using an existing planning application, TTeMP, as a start point, which is designed for the dispatchers and load specialists. To overcome the limitations of TTeMP, the new application can perform dynamic loading under emergency conditions, such as loss-of transformer loading. It also has the capability to determine the emergency rating of the transformers for a real-time estimation.
ContributorsZhang, Ming (Author) / Tylavsky, Daniel J (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2013
152257-Thumbnail Image.png
Description
Today, more and more substations are created and reconstructed to satisfy the growing electricity demands for both industry and residence. It is always a big concern that the designed substation must guarantee the safety of persons who are in the area of the substation. As a result, the safety metrics

Today, more and more substations are created and reconstructed to satisfy the growing electricity demands for both industry and residence. It is always a big concern that the designed substation must guarantee the safety of persons who are in the area of the substation. As a result, the safety metrics (touch voltage, step voltage and grounding resistance), which should be considered at worst case, are supposed to be under the allowable values. To improve the accuracy of calculating safety metrics, at first, it is necessary to have a relatively accurate soil model instead of uniform soil model. Hence, the two-layer soil model is employed in this thesis. The new approximate finite equations with soil parameters (upper-layer resistivity, lower-layer resistivity and upper-layer thickness) are used, which are developed based on traditional infinite expression. The weighted- least-squares regression with new bad data detection method (adaptive weighted function) is applied to fit the measurement data from the Wenner-method. At the end, a developed error analysis method is used to obtain the error (variance) of each parameter. Once the soil parameters are obtained, it is possible to use a developed complex images method to calculate the mutual (self) resistance, which is the induced voltage of a conductor/rod by unit current form another conductor/rod. The basis of the calculation is Green's function between two point current sources, thus, it can be expanded to either the functions between point and line current sources, or the functions between line and line current sources. Finally, the grounding system optimization is implemented with developed three-step optimization strategy using MATLAB solvers. The first step is using "fmincon" solver to optimize the cost function with differentiable constraint equations from IEEE standard. The result of the first step is set as the initial values to the second step, which is using "patternsearch" solver, thus, the non-differentiable and more accurate constraint calculation can be employed. The final step is a backup step using "ga" solver, which is more robust but lager time cost.
ContributorsWu, Xuan (Author) / Tylavsky, Daniel (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151729-Thumbnail Image.png
Description
This thesis concerns the flashover issue of the substation insulators operating in a polluted environment. The outdoor insulation equipment used in the power delivery infrastructure encounter different types of pollutants due to varied environmental conditions. Various methods have been developed by manufacturers and researchers to mitigate the flashover problem. The

This thesis concerns the flashover issue of the substation insulators operating in a polluted environment. The outdoor insulation equipment used in the power delivery infrastructure encounter different types of pollutants due to varied environmental conditions. Various methods have been developed by manufacturers and researchers to mitigate the flashover problem. The application of Room Temperature Vulcanized (RTV) silicone rubber is one such favorable method as it can be applied over the already installed units. Field experience has already showed that the RTV silicone rubber coated insulators have a lower flashover probability than the uncoated insulators. The scope of this research is to quantify the improvement in the flashover performance. Artificial contamination tests were carried on station post insulators for assessing their performance. A factorial experiment design was used to model the flashover performance. The formulation included the severity of contamination and leakage distance of the insulator samples. Regression analysis was used to develop a mathematical model from the data obtained from the experiments. The main conclusion drawn from the study is that the RTV coated insulators withstood much higher levels of contamination even when the coating had lost its hydrophobicity. This improvement in flashover performance was found to be in the range of 20-40%. A much better flashover performance was observed when the coating recovered its hydrophobicity. It was also seen that the adhesion of coating was excellent even after many tests which involved substantial discharge activity.
ContributorsGholap, Vipul (Author) / Gorur, Ravi S (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151824-Thumbnail Image.png
Description
There is a lack of music therapy services for college students who have problems with depression and/or anxiety. Even among universities and colleges that offer music therapy degrees, there are no known programs offering music therapy to the institution's students. Female college students are particularly vulnerable to depression and anxiety

There is a lack of music therapy services for college students who have problems with depression and/or anxiety. Even among universities and colleges that offer music therapy degrees, there are no known programs offering music therapy to the institution's students. Female college students are particularly vulnerable to depression and anxiety symptoms compared to their male counterparts. Many students who experience mental health problems do not receive treatment, because of lack of knowledge, lack of services, or refusal of treatment. Music therapy is proposed as a reliable and valid complement or even an alternative to traditional counseling and pharmacotherapy because of the appeal of music to young women and the potential for a music therapy group to help isolated students form supportive networks. The present study recruited 14 female university students to participate in a randomized controlled trial of short-term group music therapy to address symptoms of depression and anxiety. The students were randomly divided into either the treatment group or the control group. Over 4 weeks, each group completed surveys related to depression and anxiety. Results indicate that the treatment group's depression and anxiety scores gradually decreased over the span of the treatment protocol. The control group showed either maintenance or slight worsening of depression and anxiety scores. Although none of the results were statistically significant, the general trend indicates that group music therapy was beneficial for the students. A qualitative analysis was also conducted for the treatment group. Common themes were financial concerns, relationship problems, loneliness, and time management/academic stress. All participants indicated that they benefited from the sessions. The group progressed in its cohesion and the participants bonded to the extent that they formed a supportive network which lasted beyond the end of the protocol. The results of this study are by no means conclusive, but do indicate that colleges with music therapy degree programs should consider adding music therapy services for their general student bodies.
ContributorsAshton, Barbara (Author) / Crowe, Barbara J. (Thesis advisor) / Rio, Robin (Committee member) / Davis, Mary (Committee member) / Arizona State University (Publisher)
Created2013
152006-Thumbnail Image.png
Description
When people look for things in their environment they use a target template - a mental representation of the object they are attempting to locate - to guide their attention around a scene and to assess incoming visual input to determine if they have found that for which they are

When people look for things in their environment they use a target template - a mental representation of the object they are attempting to locate - to guide their attention around a scene and to assess incoming visual input to determine if they have found that for which they are searching. However, unlike laboratory experiments, searchers in the real-world rarely have perfect knowledge regarding the appearance of their target. In five experiments (with nearly 1,000 participants), we examined how the precision of the observer's template affects their ability to conduct visual search. Specifically, we simulated template imprecision in two ways: First, by contaminating our searchers' templates with inaccurate features, and second, by introducing extraneous features to the template that were unhelpful. In those experiments we recorded the eye movements of our searchers in order to make inferences regarding the extent to which attentional guidance and decision-making are hindered by template imprecision. We also examined a third way in which templates may become imprecise; namely, that they may deteriorate over time. Overall, our findings support a dual-function theory of the target template, and highlight the importance of examining template precision in future research.
ContributorsHout, Michael C (Author) / Goldinger, Stephen D (Thesis advisor) / Azuma, Tamiko (Committee member) / Homa, Donald (Committee member) / Reichle, Erik (Committee member) / Arizona State University (Publisher)
Created2013
152012-Thumbnail Image.png
Description
As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the

As renewable energy becomes more prevalent in transmission and distribution systems, it is vital to understand the uncertainty and variability that accompany these resources. Microgrids have the potential to mitigate the effects of resource uncertainty. With the ability to exist in either an islanded mode or maintain connections with the main-grid, a microgrid can increase reliability, defer T&D; infrastructure and effectively utilize demand response. This study presents a co-optimization framework for a microgrid with solar photovoltaic generation, emergency generation, and transmission switching. Today unit commitment models ensure reliability with deterministic criteria, which are either insufficient to ensure reliability or can degrade economic efficiency for a microgrid that uses a large penetration of variable renewable resources. A stochastic mixed integer linear program for day-ahead unit commitment is proposed to account for uncertainty inherent in PV generation. The model incorporates the ability to trade energy and ancillary services with the main-grid, including the designation of firm and non-firm imports, which captures the ability to allow for reserve sharing between the two systems. In order to manage the computational complexities, a Benders' decomposition approach is utilized. The commitment schedule was validated with solar scenario analysis, i.e., Monte-Carlo simulations are conducted to test the proposed dispatch solution. For this test case, there were few deviations to power imports, 0.007% of solar was curtailed, no load shedding occurred in the main-grid, and 1.70% load shedding occurred in the microgrid.
ContributorsHytowitz, Robin Broder (Author) / Hedman, Kory W (Thesis advisor) / Heydt, Gerald T (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151634-Thumbnail Image.png
Description
Two groups of cochlear implant (CI) listeners were tested for sound source localization and for speech recognition in complex listening environments. One group (n=11) wore bilateral CIs and, potentially, had access to interaural level difference (ILD) cues, but not interaural timing difference (ITD) cues. The second group (n=12) wore a

Two groups of cochlear implant (CI) listeners were tested for sound source localization and for speech recognition in complex listening environments. One group (n=11) wore bilateral CIs and, potentially, had access to interaural level difference (ILD) cues, but not interaural timing difference (ITD) cues. The second group (n=12) wore a single CI and had low-frequency, acoustic hearing in both the ear contralateral to the CI and in the implanted ear. These `hearing preservation' listeners, potentially, had access to ITD cues but not to ILD cues. At issue in this dissertation was the value of the two types of information about sound sources, ITDs and ILDs, for localization and for speech perception when speech and noise sources were separated in space. For Experiment 1, normal hearing (NH) listeners and the two groups of CI listeners were tested for sound source localization using a 13 loudspeaker array. For the NH listeners, the mean RMS error for localization was 7 degrees, for the bilateral CI listeners, 20 degrees, and for the hearing preservation listeners, 23 degrees. The scores for the two CI groups did not differ significantly. Thus, both CI groups showed equivalent, but poorer than normal, localization. This outcome using the filtered noise bands for the normal hearing listeners, suggests ILD and ITD cues can support equivalent levels of localization. For Experiment 2, the two groups of CI listeners were tested for speech recognition in noise when the noise sources and targets were spatially separated in a simulated `restaurant' environment and in two versions of a `cocktail party' environment. At issue was whether either CI group would show benefits from binaural hearing, i.e., better performance when the noise and targets were separated in space. Neither of the CI groups showed spatial release from masking. However, both groups showed a significant binaural advantage (a combination of squelch and summation), which also maintained separation of the target and noise, indicating the presence of some binaural processing or `unmasking' of speech in noise. Finally, localization ability in Experiment 1 was not correlated with binaural advantage in Experiment 2.
ContributorsLoiselle, Louise (Author) / Dorman, Michael F. (Thesis advisor) / Yost, William A. (Thesis advisor) / Azuma, Tamiko (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2013
151671-Thumbnail Image.png
Description
Concussion, a subset of mild traumatic brain injury (mTBI), has recently been brought to the forefront of the media due to a large lawsuit filed against the National Football League. Concussion resulting from injury varies in severity, duration, and type, based on many characteristics about the individual that research does

Concussion, a subset of mild traumatic brain injury (mTBI), has recently been brought to the forefront of the media due to a large lawsuit filed against the National Football League. Concussion resulting from injury varies in severity, duration, and type, based on many characteristics about the individual that research does not presently understand. Chronic fatigue, poor working memory, impaired self-awareness, and lack of attention to task are symptoms commonly present post-concussion. Currently, there is not a standard method of assessing concussion, nor is there a way to track an individual's recovery, resulting in misguided treatment for better prognosis. The aim of the following study was to determine patient specific higher-order cognitive processing deficits for clinical diagnosis and prognosis of concussion. Six individuals (N=6) were seen during the acute phase of concussion, two of whom were seen subsequently when their symptoms were deemed clinically resolved. Subjective information was collected from both the patient and from neurology testing. Each individual completed a task, in which they were presented with degraded speech, taxing their higher-order cognitive processing. Patient specific behavioral patterns are noted, creating a unique paradigm for mapping subjective and objective data for each patient's strategy to compensate for deficits and understand speech in a difficult listening situation. Keywords: concussion, cognitive processing
ContributorsBerg, Dena (Author) / Liss, Julie M (Committee member) / Azuma, Tamiko (Committee member) / Caviness, John (Committee member) / Arizona State University (Publisher)
Created2013
151276-Thumbnail Image.png
Description
This thesis presents a new technique to develop an air-conditioner (A/C) compressor single phase induction motor model for use in an electro-magnetic transient program (EMTP) simulation tool. The method developed also has the capability to represent multiple units of the component in a specific three-phase distribution feeder and investigate the

This thesis presents a new technique to develop an air-conditioner (A/C) compressor single phase induction motor model for use in an electro-magnetic transient program (EMTP) simulation tool. The method developed also has the capability to represent multiple units of the component in a specific three-phase distribution feeder and investigate the phenomenon of fault-induced delayed voltage recovery (FIDVR) and the cause of motor stalling. The system of differential equations representing the single phase induction motor model is developed and formulated. Implicit backward Euler method is applied to numerically integrate the stator currents that are to be drawn from the electric network. The angular position dependency of the rotor shaft is retained in the inductance matrix associated with the model to accurately capture the dynamics of the motor loads. The equivalent circuit of the new model is interfaced with the electric network in the EMTP. The dynamic response of the motor when subjected to faults at different points on voltage waveform has been studied using the EMTP simulator. The mechanism and the impacts of motor stalling need to be explored with multiple units of the detailed model connected to a realistic three-phase distribution system. The model developed can be utilized to assess and improve the product design of compressor motors by air-conditioner manufacturers. Another critical application of the model would be to examine the impacts of asymmetric transmission faults on distribution systems to investigate and develop mitigation measures for the FIDVR problem.
ContributorsLiu, Yuan (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2012